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Reading

Required:

 Shirley, Sec. 2.4, 2.7
 Shirley, Ch. 5.1-5.3
 Shirley, Ch. 6

Further reading:

 Foley, et al, Chapter 5.1-5.5.
 David F. Rogers and J. Alan Adams, Mathematical 

Elements for Computer Graphics, 2nd Ed., McGraw-
Hill, New York, 1990, Chapter 2. 
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Geometric transformations

Geometric transformations will map points in one 
space to points in another: (x', y‘, z‘ ) = f (x, y, z ).

These transformations can be very simple, such as 
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be 
represented easily with matrix operations.
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Vector representation

We can represent a point, p = (x, y), in the plane or p= (x, y, z ) 
in 3D space

 as column vectors 

 as row vectors
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Canonical axes
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Vector length and dot products
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Vector cross products
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Representation, cont.

We can represent a 2-D transformation M by a matrix

If p is a column vector, M goes on the left:

If p is a row vector, MT goes on the right:

We will use column vectors.

a b

c d
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Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M :

So:

We will develop some intimacy with the elements a, b, c, d…

'

'

x a b x

y c d y

     
     

     

'
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x ax by

y cx dy
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Identity

Suppose we choose a =d =1, b =c =0:

 Gives the identity matrix:

 Doesn't move the points at all

1 0

0 1
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Scaling

Suppose we set b =c =0, but let a and d take on any 
positive value:

 Gives a scaling matrix:

 Provides differential (non-uniform) scaling in x
and y :

0

0

a

d
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y dy
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______________

Suppose we keep b =c =0, but let either a or d go 
negative.

Examples:

1 0

0 1

 
 
 

1 0

0 1
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____________

Now let's leave a =d =1 and experiment with b . . .

The matrix

gives:

1

0 1

b 
 
 

'

'

x x by

y y

 


 
 
 

1 1

0 1
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Effect on unit square

Let's see how a general 2 x 2 transformation M affects 
the unit square: 

   

0 1 1 0 0

0 0 1 1 0

a b

c d

a b a a b b

c d c c d d
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Effect on unit square, cont.

Observe:

 Origin invariant under M
 M can be determined just by knowing how the 

corners (1,0) and (0,1) are mapped
 a and d give x- and y-scaling
 b and c give x- and y-shearing
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Rotation

From our observations of the effect on the unit square, 
it should be easy to write down a matrix for “rotation 
about the origin”:

Thus,

1
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Degrees of freedom

For any transformation, we can count its degrees of 
freedom – the number of independent (though not 
necessarily unique) parameters needed to specify the 
transformation.  

One way to count them is to add up all the apparently 
free variables and subtract the number of equations 
that constrain them.

How many degrees of freedom does an arbitrary 2X2 
transformation have?

How many degrees of freedom does a 2D rotation 
have?



18

Linear transformations

The unit square observations also tell us the 2x2 
matrix transformation implies that we are 
representing a point in a new coordinate system:

where u=[a c ]T and v=[b d ]T are vectors that define a 
new basis for a linear space.

The transformation to this new basis (a.k.a., change of 
basis) is a linear transformation.

 

M

a b x

c d y

x
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

 Scaling
 Rotation
 Reflection
 Shearing

Q: What important operation does that leave out?
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Affine transformations

In order to incorporate the idea that both the basis 
and the origin can change, we augment the linear 
space u, v with an origin t.

We call u, v, and t (basis and origin) a frame for an
affine space.

Then, we can represent a change of frame as:

This change of frame is also known as an affine 
transformation.

How do we write an affine transformation with 
matrices?

x y    p' u v t
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Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a 
third component to every point:

Adding the third “w ” component puts us in 
homogenous coordinates.

And then transform with a 3 x 3 matrix:

. . . gives translation!

1

x
x

y
y
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Anatomy of an affine matrix

The addition of translation to linear 
transformations gives us affine transformations.

In matrix form, 2D affine transformations always 
look like this:

2D affine transformations always have a bottom 
row of [0 0 1].

An “affine point” is a “linear point” with an added 
w-coordinate which is always 1:

Applying an affine transformation gives another 
affine point:
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aff 1
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Rotation about arbitrary points

1. Translate q to origin

2. Rotate

3. Translate back

Note: Transformation order is important!!

Until now, we have only considered rotation about the 
origin.

With homogeneous coordinates, you can specify a rotation, 
 , about any point q = [qx qy]T with a matrix. 
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Points and vectors

Vectors have an additional coordinate of w = 0.  Thus, a 
change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine 
matrix?

These representations reflect some of the rules of affine 
operations on points and vectors:

One useful combination of affine operations is:

Q: What does this describe?

vector + vector

 scalar  vector

  point - point

 point + vector

 point + point


 





 ( ) ot tp p u
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Barycentric coordinates

A set of points can be used to create an affine frame.  
Consider a triangle ABC and a point P :

We can form a frame with an origin C and the vectors from 
C to the other vertices:

We can then write P in this coordinate frame:

The coordinates (, , ) are called the barycentric
coordinates of P relative to A, B, and C.

                  B A C A Au v t

   


P u v t
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Computing barycentric coordinates

Writing out the barycentric combination of points

rearrange the left-hand side into matrix form

to get a system of linear eqations

and solve for the unknowns with Cramer’s Rule:
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Barycentric coords from area ratios

It is easy to show that:

where SArea() is the signed area of a triangle.

Thus, we find this solution:

is equivalent to this one:

Q: What does it mean for a barycentric coordinate to 
be negative?

    
SArea( ) SArea( ) SArea( )

                
SArea( ) SArea( ) SArea( )

PBC APC ABP

ABC ABC ABC

 
        
  

2D( ) ( ) 2 SArea( )

1 1 1

x x x

y y y

A B C

A B C B A C A ABC

1 1 1 1 1 1 1 1 1
        

1 1 1 1 1 1 1 1 1

x x x x x x x x x

y y y y y y y y y

x x x x x x x x x

y y y y y y y y y

P B C A P C A B P

P B C A P C A B P

A B C A B C A B C

A B C A B C A B C
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Affine, vector, and convex combinations

Note that we seem to have constructed a point by adding 
points together, which we said was illegal, but as long as 
they have coefficients that sum to one, it’s ok. 

More generally:

is an affine combination if:

It is a vector combination if:

And it is a convex combination if:

Q: Why is it called a convex combination? 
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Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D 
ones.  

For example, scaling:

' 0 0 0

' 0 0 0

' 0 0 0

1 0 0 0 1 1

x

y

z

x s x

y s y

z s z
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Translation in 3D

' 1 0 0

' 0 1 0

' 0 0 1

1 0 0 0 1 1

x

y

z

x t x

y t y

z t z
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How many degrees of freedom are there in an 
arbitrary 3D rotation?  

Rotation in 3D
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These are the rotations about the canonical axes:

A general rotation can be specified in terms of a 
product of these three matrices.  How else might 
you specify a rotation?

Rotation in 3D (cont’d)

 


 

 


 

 
 



 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

1 0 0 0

0 cos sin 0
( )

0 sin cos 0

0 0 0 1

cos 0 sin 0

0 1 0 0
( )

sin 0 cos 0

0 0 0 1

cos sin 0 0

sin cos 0 0
( )

0 0 1 0

0 0 0 1

x

y

z

R

R

R

xR

yR

zR

Use right hand rule
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Shearing in 3D

Shearing is also more complicated.  Here is one 
example:

We call this a shear with respect to the x-z plane.

' 1 0 0

' 0 1 0 0

' 0 0 1 0

1 0 0 0 1 1

x b x

y y

z z
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Preservation of affine combinations

A transformation F is an affine transformation if it 
preserves affine combinations:

where the Ai are points, and:

Clearly, the matrix form of F has this property.

One special example is a matrix that drops a 
dimension.   For example:

This transformation, known as an orthographic 
projection  is an affine transformation.

We’ll use this fact later…

1 1 1 1( ) ( ) ( )n n n nF A A F A F A        
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Properties of affine transformations

Here are some useful properties of affine 
transformations: 

 Lines map to lines
 Parallel lines remain parallel
 Midpoints map to midpoints (in fact, ratios are 

always preserved)

  ratio
s

t

pq p'q'

qr q'r'
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Affine transformations in OpenGL

OpenGL maintains a “modelview” matrix that holds 
the current transformation M.

The modelview matrix is applied to points (usually 
vertices of polygons) before drawing.

It is modified by commands including:

 glLoadIdentity() M  I
– set M to identity

 glTranslatef(tx, ty, tz) M  MT
– translate by (tx, ty, tz)

 glRotatef(θ, x, y, z) M  MR
– rotate by angle θ about axis (x, y, z)

 glScalef(sx, sy, sz) M  MS
– scale by (sx, sy, sz)

Note that OpenGL adds transformations by  
postmultiplication of the modelview matrix.


