Affine Transformations

Reading

» Foley et al., Chapter 5.6 and Chapter 6
Supplemental

» David F. Rogers and J. Alan Adams, Mathematical Elements
for Computer Graphics, Second edition
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Affine Geometry

Points: location in 3D space

» Vectors: quantity with a direction and magnitude, but no fixed
position

e Scalar: a real number

\ s=5.3

Affine Spaces

Affine space consists of points and vectors related by a set of
axioms:

 Difference of two points is a vector:

» Head-to-tail rule for vector addition:

®p

Affine Operations

Legal affine operations:
vector +vector — vector
scalar - vector — vector
point — point — vector
point + vector — point

... example of an “illegal” operation:
point + point — nonsense
Useful combination of affine operations:
Pla)=PR, +av

What is it?




Affine Combination

Affine combination of two points:
Q= alQl +0’2Q2
where o, +a,=1 s defined to be the point
Q= Q1 +0(1(Q2 _Q1)
We can generalize affine combination to multiple points:
Q =051Q1+052Q2 +"'+anQn
where

2o =1

Affine Frame

A frame can be defined as a set of vectors and a point:
(Vv 0)

Where v,,---,v, form a basis and O is a point in space.
Any point P can be written as
P=pv,+-+pyVv,+0

And any vector as:

U=uV, +---+UV,

Matrix representation of points and vectors

Coordinate axiom: 0.-P=0
1.P=P

So every point in the frame 7 =(v,,v,,...,v,,0) can be written as
P=pv,+p,Vv,+--+p,Vv,+1.0

P
P,
=[v, v, - v, O]
Py
And every vector as 1
u=uyVv, +u,v, +---+uv,+0-0
ul

Changing frames

Given a point P in frame F, what are the coordinates of P in
frame 7 =(v,,v,,...,Vv,,0’)

P, P
P, P;
P:[Vl V, oV, (’)] =[Vi V'2 V; (’)']
P, P,
1 1

Since each element of F can be written in coordinates relative to
o

v, = f v+ 4+ V)

inYn
’ ’ 4
0= fn+1,].v1 +et fr|+].,nvn +0




Changing frames cont’d

Written in a matrix form

_ p'_
pz fll fn,l fnj—l,l
[VI V2 Vn O,] - [VI V2 Vn OI] ‘
’ fl‘n fn‘n
Po 0 0 0
(- 1 .
p]/. I fl,l fn 1 fn+1,l pl pl
p2 : : p2 p2
71, . =F
’ 1n n,n n+l,n
Pn 0 0 0 1 Pn Pn
1] - |1 |1

Py
P,

Euclidean and Cartesian spaces
A Euclidean space is an affine space with an inner product:
(uv)=u-v=u'v

A Cartesian space is a Euclidean space with a standard
orthonormal frame. In3D: (i, j , k, O)

1 ifi=j
el 'e' = .
' |0 otherwise

Useful properties and operations
in Cartesian spaces

Length: M =JVv-V
Distance between points: |P —Q|
Y
Angle between vectors: cos™ [U—J
Jul-[v]
Perpendicular (orthogonal): U-V =0

Parallel: UV _n
ul-[v]

Cross product (in 3D): UXV =W

Affine Transformations

F:A— B is an affine transformation if it preserves affine

combinations:
F (Z%Qi ) = Zai F(Q)

Where Zai =1 . The same applies to vectors.

Affine coordiantes are preserved:F(O+ > pv, ) =F(O)+ ) _pF(v,)
Lines map to lines: F(R, +av)=F(R)+aF(v)
Paralelism is preserved:

F(Q +AV)=F(Q)+ BF(V)

Ratios are preserved: Ratio(Q,,Q,Q,)=Ratio(F(Q,),F(Q),F(Q,))




2D Affine Transformations Identity
P=[x,y,1] Doesn’t move points at all
P is a column vector P'=MP
x: a b cllx 1 0 0]
yi=|d e flly
11 |0 0 1|1 1 0
P is a row vector _0 0 1_
P'=PM
a d 0
[X vy 1]=[x y 1]/b e 0
c f 1
Translation Scaling
, Changing the diagonal elements performs scaling
X 1 0 c||x
a 0 0 — ax
y |=|0 1 fly 0 f 0 — 4
1| |o o 11 0 0 1 =
X'=X+cC If a=f scaling is uniform
y=y+f

What if a,f<0
e -1 0 0

0 -1 0
0 0 1




Shearing

Effect on unit square

What about the off-diagonal elements? a b 0|0 110 0 a a+b b
The matrix 10 0 d e 0[/0 01 1|=|0 d d+e e
d 10 0 01111111 1 1
0 0 1
e M can be determined just by knowing how corners [1,0,1] and
Gives [0,1,1] are mapped
X' = * Aand f give x- and y-scaling
* Band d give x- and y-shearing
y'=dx+y
Rotation The Matrices

» Rotation of points [1,0,1] and [0,1,1] by angle o around the
origin:

1 cos(x)
0|—| sin(e)
1 1
0 —sin(o)
1|—| cos(x)
1 1

_ _ 1 0 0
Identity (do nothing): 0 1 O
0 0 1
Scale by s, in the x and s, in the y direction { sc 0 0 }

s, <0ors, < Oisreflection): | 0 s, 0
(5 Y A

Rotate by angle € (in radians): { Z?r?g Cscl)gg g }

0 0 1
. . Lo 1 a O
Shear by amount a in the x direction: 0 1 0
0 0 1
. .. (1 0 0
Shear by amount b in the y direction: b 1 0
0 0 1
1 0 t
Translate by the vector (t,, t,): 0 1 tf
0 O




Transformation Composition Let’s play a game

Applying transformations F to point P and transformation G to the * Problems 2,3,4,14,17,18
result

P'=FP
P” =GP’
Combining two transformations
P’ =G(FP)
= (GF)P

Rotation around arbitrary point Reflection around arbitrary axis

op




Reflection around arbitrary axis Properties of Transforms
- » Compact representation
» Fast implementation
N » Easy to invert
y » Easy to compose
/
op
;
3D Scaling 3D Translation
(X'| [s, 0 0 O] x X7 [0 0 0 t][x]
y'| |0 s, 0 0]y y| |0 00 t]y
| |0 0 s, 0}z Z| [0 0 0tz
1] /0 0 0 1)1 (1) [0 00 1j1]
Y Y , y
A A i
> T > I
z z s




* Rotation now has
10
Re(0) = 0 sin@
0 0
[ cos® 0
0 1
—sin@ 0
0 0

Ry(6) =

Rz (‘9) = 0 0

0 0

0 cos@ -—sin@

[cos® -sin@ 0
sind cos@ O
1
0

Rotation in 3D

more possibilities in 3D:
0 0] Yy

cosé
0

sin@

Use right hand rule

0
0
1
0
0
cosgd 0 Z
1
0
0
0
1

Rotation in 3D

» What about the inverses of 3D rot=tinne?
10 0 0] ¥
0 cos@é -sind
0 sin@ cosd
0 0 0
[cos® 0 sin@
0 1 0
—-sing 0
| 0 0 o
[cos® -sin@ 0
sind cos@ O
1
0

Re(6) = &
X

Ry(6) =

Rz (9) = 0 0

0 0

Shearing in 3D

» Shearing is also more complicated. Here is one example:

X' 1 b 0 0fx
y'| |0 1 00|y
Z| |0 0 1 0]z
1 0 0 0 1)1

y

Properties of affine transformations

 All of the transformations we've looked at so far are examples
of “affine transformations.”
» Here are some useful properties of affine transformations:
— Lines map to lines
— Parallel lines remain parallel
— Midpoints map to midpoints (in fact, ratios are always preserved)

ratio =

lpall _s _ lp'a’
p' flar] 1

o]




Rotation that aligns
3 orthonormal vectors
with the principal axes

)“q/v
LG} \é
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