
Ray Tracing

2

Reading

Foley et al., 16.12

Optional:
• Glassner, An introduction to Ray Tracing, Academic Press,

Chapter 1.
• T. Whitted. “An improved illumination model for shaded

display”. Communications of the ACM 23(6), 343-349,
1980.

3

Geometric optics
We will take the view of geometric optics
• Light is a flow of photons with wavelengths. We'll call

these flows ``light rays.''
• Light rays travel in straight lines in free space.
• Light rays do not interfere with each other as they cross.
• Light rays obey the laws of reflection and refraction.
• Light rays travel form the light sources to the eye, but the

physics is invariant under path reversal (reciprocity).

4

Forward Ray Tracing
• Rays emanate from light sources and bounce around in the scene.
• Rays that pass through the projection plane and enter the eye

contribute to the final image.

• What’s wrong with this method?

5

Eye vs. Light
• Starting at the light (a.k.a. forward ray tracing, photon

tracing)

• Starting at the eye (a.k.a. backward ray tracing)

6

Whitted ray-tracing algorithm
1. For each pixel, trace a primary ray to the first visible

surface
2. For each intersection trace secondary rays:

– Shadow rays in directions Li to light sources
– Reflected ray in direction R
– Refracted ray (transmitted ray) in direction T

7

Reflection
• Reflected light from objects behaves like specular reflection from light

sources
– Reflectivity is just specular color
– Reflected light comes from direction of perfect specular reflection

8

Refraction

• Amount to transmit determined by transparency
coefficient, which we store explicitly

• T comes from Snell’s law

sin() sin()i i t tη θ η θ=

9

Total Internal Reflection
• When passing from a dense medium to a less dense

medium, light is bent further away from the surface normal
• Eventually, it can bend right past the surface!
• The θi that causes θt to exceed 90 degrees is called the

critical angle (θc). For θi greater than the critical angle, no
light is transmitted.

• A check for TIR falls out of the construction of T

cθ

10

Index of Refraction
• Real-world index of refraction is a complicated physical property of

the material

• IOR also varies with wavelength, and even temperature!
• How can we account for wavelength dependence when ray tracing?

11

Stages of Whitted ray-tracing

12

The Ray Tree

13

Shading
If I(P0, u) is the intensity seen from point P0 along direction u

where
Idirect = Shade(N, L, u, R) (e.g. Phong shading model)

Typically, we set kr = ks and kt = 1 – ks .

0(,) direct reflected transmittedI P I I I= + +u

(,)
(,)

reflected r

transmitted t

I k I P
I k I P

=

=

R
T

14

Parts of a Ray Tracer
• What major components make up the core of a ray tracer?

– Outer loop sends primary rays into the scene
– Trace arbitrary ray and compute its color contribution as it travels

through the scene
– Shading model

() () ()e
sn

a a si ili d
i

I k k I f d I k k+ +
⎡ ⎤+ ⎢ ⎥⎣ ⎦

= + ⋅ + ⋅∑ N L V R

15

Outer Loop

void traceImage (scene)

{

for each pixel (i,j) in the image {

p = pixelToWorld(i,j)
c = COP

u = (p - c)/||p – c||

I(i,j) = traceRay (scene, c, u)

}

}

16

Trace Pseudocode
color traceRay(point P0, direction u)

{

(P,Oi) = intersect(P0, u);

I = 0

for each light source l {

(P’, LightObj) = intersect(P, dir(P,l))

if LightObj = l {

I = I + I(l)

}

}

I = I + Obj.Kr * traceRay(P, R)

I = I + Obj.Kt * traceRay(P, T)

return I

}

Ojl

17

TraceRay Pseudocode
function traceRay(scene, P0, u) {

(t, P, N, obj) ← scene.intersect (P0, u)

I = shade(u, N, scene)

R = reflectDirection(u, N)

I ← I + obj.kr ∗ traceRay(scene, P, R)

if ray is entering object {

(ni, nt) ← (index_of_air, obj.index)

} else {

(ni, nt) ← (obj.index, index_of_air)

}

if (notTIR (u, N, ni, nt) {

T = refractDirection (u, N, ni, nt)

I ← I + obj.kt ∗ traceRay(scene, P, T)

}

return I

}

obj

18

Controlling Tree Depth
• Ideally, we’d spawn child rays at every object intersection

forever, getting a “perfect” color for the primary ray.
• In practice, we need heuristics for bounding the depth of

the tree (i.e., recursion depth)
• ?

19

Shading Pseudocode
function shade(obj, scene, P, N, u) {

I ← obj.ke + obj. ka * scene->Ia
for each light source {

atten = distanceAttenuation(, P) *

shadowAttenuation(, Scene, P)

I ← I + atten*(diffuse term + spec term)

}

return I

}

obj

20

obj

Shadow attenuation pseudocode
Check to see if a ray makes it to the light source.
function shadowAttenuation(, scene, P) {

d = (.position - P).normalize()

(t, Pl, N, obj) ← scene.intersect(P, d)

if Pl is before the light source {

atten = 0

} else {

atten = 1

}

return atten

}

Q: What if there are transparent objects along a path to the
light source?

21

Ray-Object Intersection
• Must define different intersection routine for each

primitive
• The bottleneck of the ray tracer, so make it fast!
• Most general formulation: find all roots of a function of

one variable
• In practice, many optimized intersection tests exist (see

Glassner)

22

Ray-Sphere Intersection

• Given a sphere centered at Pc =[0,0,0] with radius r and a
ray P(t) = P0 + tu, find the intersection(s) of P(t) with the
sphere.

23

Object hierarchies and
ray intersection

How do we intersect with primitives transformed with affine
transformations?

1

1

'

0

'

1

x

y

z

x

y

z

u
u
u

P
P

P
P

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

u X

X

X

P
u

24

Numerical Error
• Floating-point roundoff can add up in a ray tracer, and

create unwanted artifacts
– Example: intersection point calculated to be ever-so-slightly inside

the intersecting object. How does this affect child rays?

• Solutions:
– Perturb child rays
– Use global ray epsilon

25

Plane Intersection
• We can write the equation of a plane as:

• The coefficients a, b, and c form a vector
that is normal to the plane, n = [a b c]T.
Thus, we can re-write the plane equation
as:

• We can solve for the intersection parameter
(and thus the point):

0ax by cz d+ + + =

() 0t d⋅ + + =n P u

26

Ray-Polymesh Intersection

1. Use bounding sphere for fast failure
2. Test only front-facing polygons
3. Intersect ray with each polygon’s supporting plane
4. Use a point-in-polygon test
5. Intersection point is smallest t

27

Axis-Aligned Cube Intersection

• for each pair of parallel planes, compute t intersection values for both
• Let tnear be the smaller, tfar be the larger
• let t1 = largest tnear, t2 = smallest tfar

• ray intersections cube if t1 <= t2

• intersection point given by t1

p
tnear

tfar

p
tnear

tfar

28

Goodies
• There are some advanced ray tracing feature that self-

respecting ray tracers shouldn’t be caught without:
– Acceleration techniques
– Antialiasing
– CSG
– Distribution ray tracing

29

Acceleration Techniques
• Problem: ray-object intersection is very expensive

– make intersection tests faster
– do fewer tests

30

Fast Failure
• We can greatly speed up ray-object intersection by identifying cheap

tests that guarantee failure
• Example: if origin of ray is outside sphere and ray points away from

sphere, fail immediately.

• Many other fast failure conditions are possible!

31

Hierarchical Bounding Volumes

• Arrange scene into a tree
– Interior nodes contain primitives with very simple intersection tests (e.g.,

spheres). Each node’s volume contains all objects in subtree
– Leaf nodes contain original geometry

• Like BSP trees, the potential benefits are big but the hierarchy is hard
to build

Intersect with largest
bounding volume

The intersect with children

Eventually, intersect with primitives

32

Spatial Subdivision

• Divide up space and record what objects are in each cell
• Trace ray through voxel array

Uniform subdivision
in 3D

Uniform subdivision
in 2D

Quadtree

Octree

33

Antialiasing
• So far, we have traced one ray through each pixel in the

final image. Is this an adequate description of the contents
of the pixel?

• This quantization through inadequate sampling is a form of
aliasing. Aliasing is visible as “jaggies” in the ray-traced
image.

• We really need to colour the pixel based on the average
colour of the square it defines.

34

Aliasing

35

Supersampling
• We can approximate the average colour of a pixel’s area

by firing multiple rays and averaging the result.

36

Adaptive Sampling
• Uniform supersampling can be wasteful if large parts of the pixel don’t

change much.
• So we can subdivide regions of the pixel’s area only when the image

changes in that area:

• How do we decide when to subdivide?

37

CSG
• CSG (constructive solid geometry) is an incredibly powerful way to

create complex scenes from simple primitives.

• CSG is a modeling technique; basically, we only need to modify ray-
object intersection.

38

CSG Implementation
• CSG intersections can be analyzed using “Roth diagrams”.

– Maintain description of all intersections of ray with primitive
– Functions to combine Roth diagrams under CSG operations

• An elegant and extremely slow system

39

Distribution Ray Tracing
• Usually known as “distributed ray tracing”, but it has nothing to do

with distributed computing
• General idea: instead of firing one ray, fire multiple rays in a jittered

grid

• Distributing over different dimensions gives different effects
• Example: what if we distribute rays over pixel area?

40

Noise

•Noise can be thought of as randomness added to the signal.
•The eye is relatively insensitive to noise.

41

DRT pseudocode
traceImage() looks basically the same, except now each pixel records the
average color of jittered sub-pixel rays.

function traceImage (scene):
for each pixel (i, j) in image do

I(i, j) ← 0
for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j, id))
p ← COP
u ←(s - p).normalize()
I(i, j) ← I(i, j) + traceRay(scene, p, u, id)

end for
I(i, j) I(i, j)/numSubPixels

end for
end function

•A typical choice is numSubPixels = 4*4.

42

DRT pseudocode (cont’d)
•Now consider traceRay(), modified to handle (only) opaque
glossy surfaces:

function traceRay(scene, p, u, id):
(q, N, obj) ← intersect (scene, p, u)
I ← shade(…)
R ← jitteredReflectDirection(N, -u, id)
I ← I + obj.kr ∗ traceRay(scene, q, R, id)
return I

end function

43

Pre-sampling glossy reflections

44

Distributing Reflections
• Distributing rays over

reflection direction gives:

45

Distributing Refractions
• Distributing rays over transmission direction gives:

46

Distributing Over Light Area
• Distributing over light

area gives:

47

Distributing Over Aperature
• We can fake distribution through a lens by choosing a

point on a finite aperature and tracing through the “in-
focus point”.

• What does this simulate?

48

Distributing Over Time
• We can endow models with velocity vectors and distribute

rays over time. this gives:

49 50

• In general, you can trace rays through a scene and keep
track of their id’s to handle all of these effects:

Chaining the ray id’s

