
Particle Systems
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Reading
• Required:

– Witkin, Particle System Dynamics, SIGGRAPH ’97 course notes on 
Physically Based Modeling.

• Optional
– Witkin and Baraff, Differential Equation Basics, SIGGRAPH ’97 course 

notes on Physically Based Modeling.
– Hocknew and Eastwood. Computer simulation using particles.  Adam 

Hilger, New York, 1988.
– Gavin Miller. “The motion dynamics of snakes and worms.” Computer 

Graphics 22:169-178, 1988.
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What are particle systems?
A particle system is a collection of point masses that obeys some 

physical laws (e.g, gravity or spring behaviors).

Particle systems can be used to simulate all sorts of physical 
phenomena:
– Smoke
– Snow
– Fireworks
– Hair
– Cloth
– Snakes
– Fish
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Overview
1. One lousy particle
2. Particle systems
3. Forces: gravity, springs
4. Implementation
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Particle in a flow field
We begin with a single particle with:

– Position,  

– Velocity, 

Suppose the velocity is dictated by some driving function g:

x
g(x,t)

x

y

x
y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x

/
/

dx dtd
dy dtdt
⎡ ⎤

≡ = = ⎢ ⎥
⎣ ⎦

xv x&

( , )t=x g x&

6

Vector fields
At any moment in time, the function g defines a vector field over x:

How does our particle move through the vector field?
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Diff eqs and integral curves

The equation is actually a 
first order differential equation.

We can solve for x through time by starting at an initial point and 
stepping along the vector field:

This is called an intial value problem and the solution is called an 
integral curve.

Start Here

( , )t=x g x&
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Euler’s method
One simple approach is to choose a time step, ∆t, and take linear 
steps along the flow:

This approach is called 
Euler’s method and looks like:
Properties:

– Simplest numerical method
– Bigger steps, bigger errors

Need to take pretty small steps, so not very efficient.  Better (more 
complicated) methods exist, e.g., “Runge-Kutta.”
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Particle in a force field
• Now consider a particle in a force field f.
• In this case, the particle has:

– Mass, m
– Acceleration, 

• The particle obeys Newton’s law: 

• The force field f can in general depend on the position and 
velocity of the particle as well as time.

• Thus, with some rearrangement, we end up with:
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Second order equations
This equation:

is a second order differential equation.

Our solution method, though, worked on first order differential equations.

We can rewrite this as:

where we have added a new variable v to get a pair 
of coupled first order equations.
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Phase space
Concatenate x and v to make a 6-vector: position 

in phase space.

Taking the time derivative: another 6-vector.

A vanilla 1st-order differential equation.

⎡ ⎤
⎢ ⎥
⎣ ⎦

x
v

/ m
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x v
v f
&

&

⎡ ⎤
⎢ ⎥
⎣ ⎦

x
v
&

&

12

Particle structure
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Solver interface
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Particle systems

particles n time
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Solver interface

particles n time
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Forces
• Constant (gravity)
• Position/time dependent (force fields)
• Velocity-dependent (drag)
• N-ary (springs)
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Gravity

Force law:

grav m=f G
p->f += p->m * F->G
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Viscous drag

Force law:

drag dragk= −f v
p->f -= F->k * p->v
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Damped spring
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Force law:
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Particle systems with forces
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derivEval loop
1. Clear forces

– Loop over particles, zero force accumulators

2. Calculate forces
– Sum all forces into accumulators

3. Gather
– Loop over particles, copying v and f/m into destination array
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derivEval Loop
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Apply forces
to particles
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Return [v,f/m,…]
to solver

Clear force accumulators
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Solver interface
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Differential equation solver

/ m
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x v
v f
&

&

Euler method: 1
1 1 1

1
1 1 1 1

1

1

/

/

i i i

i i i

i i i
n n n

i i i
n n n n

m
t

m

+

+

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x v

v v f

x x v

v v f

M M M



25

Bouncing off the walls
• Add-on for a particle simulator
• For now, just simple point-plane 

collisions

26

Normal and tangential components
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Collision Detection
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Collision Response
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Artificial Fish
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Related Research
• Determining dynamic parameters for cloth simulation
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Summary
What you should take away from this lecture:

– The meanings of all the boldfaced terms
– Euler method for solving differential equations
– Combining particles into a particle system 
– Physics of a particle system
– Various forces acting on a particle
– Simple collision detection


