
Particle Systems

2

Reading
• Required:

– Witkin, Particle System Dynamics, SIGGRAPH ’97 course notes on
Physically Based Modeling.

• Optional
– Witkin and Baraff, Differential Equation Basics, SIGGRAPH ’97 course

notes on Physically Based Modeling.
– Hocknew and Eastwood. Computer simulation using particles. Adam

Hilger, New York, 1988.
– Gavin Miller. “The motion dynamics of snakes and worms.” Computer

Graphics 22:169-178, 1988.

3

What are particle systems?
A particle system is a collection of point masses that obeys some

physical laws (e.g, gravity or spring behaviors).

Particle systems can be used to simulate all sorts of physical
phenomena:
– Smoke
– Snow
– Fireworks
– Hair
– Cloth
– Snakes
– Fish

4

Overview
1. One lousy particle
2. Particle systems
3. Forces: gravity, springs
4. Implementation

5

Particle in a flow field
We begin with a single particle with:

– Position,

– Velocity,

Suppose the velocity is dictated by some driving function g:

x
g(x,t)

x

y

x
y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x

/
/

dx dtd
dy dtdt
⎡ ⎤

≡ = = ⎢ ⎥
⎣ ⎦

xv x&

(,)t=x g x&

6

Vector fields
At any moment in time, the function g defines a vector field over x:

How does our particle move through the vector field?

7

Diff eqs and integral curves

The equation is actually a
first order differential equation.

We can solve for x through time by starting at an initial point and
stepping along the vector field:

This is called an intial value problem and the solution is called an
integral curve.

Start Here

(,)t=x g x&

8

Euler’s method
One simple approach is to choose a time step, ∆t, and take linear
steps along the flow:

This approach is called
Euler’s method and looks like:
Properties:

– Simplest numerical method
– Bigger steps, bigger errors

Need to take pretty small steps, so not very efficient. Better (more
complicated) methods exist, e.g., “Runge-Kutta.”

() () ()
() (,)

t t t t t
t t t

+∆ = +∆ ⋅
= +∆ ⋅

x x x
x g x

&

9

Particle in a force field
• Now consider a particle in a force field f.
• In this case, the particle has:

– Mass, m
– Acceleration,

• The particle obeys Newton’s law:

• The force field f can in general depend on the position and
velocity of the particle as well as time.

• Thus, with some rearrangement, we end up with:

2

2d d
dt dt

≡ = =va x x
&&

m m= =f a x&&

(, ,)t
m

= f x xx
&

&&

10

Second order equations
This equation:

is a second order differential equation.

Our solution method, though, worked on first order differential equations.

We can rewrite this as:

where we have added a new variable v to get a pair
of coupled first order equations.

(, ,)t
m

= f x vx&&

(, ,)t
m

=⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎣ ⎦

x v
f x vv

&

&

11

Phase space
Concatenate x and v to make a 6-vector: position

in phase space.

Taking the time derivative: another 6-vector.

A vanilla 1st-order differential equation.

⎡ ⎤
⎢ ⎥
⎣ ⎦

x
v

/ m
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x v
v f
&

&

⎡ ⎤
⎢ ⎥
⎣ ⎦

x
v
&

&

12

Particle structure

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

x
v
f

position
velocity
force accumulator
mass

Position
in phase space

13

Solver interface

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

x
v
f ⎡ ⎤

⎢ ⎥
⎣ ⎦

x
v

/ m
⎡ ⎤
⎢ ⎥
⎣ ⎦

v
f

[]6getDim

derivEval

getState

setState

14

Particle systems

particles n time

31 2

31 2

31 2

31 2

n

n

n

nm mm m

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x xx x
v vv v
f ff f

L

15

Solver interface

particles n time

1 1 2 2

1 2
1 2

1 2

6

n n

n
n

n

n

m m m

x v x v x v
ff fv v x

L

L

derivEval

get/setState getDim

16

Forces
• Constant (gravity)
• Position/time dependent (force fields)
• Velocity-dependent (drag)
• N-ary (springs)

17

Gravity

Force law:

grav m=f G
p->f += p->m * F->G

18

Viscous drag

Force law:

drag dragk= −f v
p->f -= F->k * p->v

19

Damped spring

1

2 1

Force law:

()s dk k
⎡ ⎤⎛ ⎞

= − − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

= −

v x xf x r
x x

f f

  


 

r = rest length

1 2= −x x x

1x

2x

1 2= −v v v

20

Particle systems with forces

particles n time forces

F F F F

nf

1 2

1 2

1 2

1 2

n

n

n

nmm m

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

xx x
vv v
ff f

L

21

derivEval loop
1. Clear forces

– Loop over particles, zero force accumulators

2. Calculate forces
– Sum all forces into accumulators

3. Gather
– Loop over particles, copying v and f/m into destination array

22

derivEval Loop

F F F F

Apply forces
to particles

2

1 2

1 2

1 2

1 2

n

n

n

nmm m

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

xx x
vv v
ff f

L
3

Return [v,f/m,…]
to solver

Clear force accumulators

11 2

1 2

1 2

1 2

n

n

n

nmm m

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

xx x
vv v
ff f

L

23

Solver interface

particles n time

derivEval

get/setState getDim

1 1 2 2

1 2
1 2

1 2

6

n n

n
n

n

n

m m m

x v x v x v
ff fv v x

L

L

24

Differential equation solver

/ m
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x v
v f
&

&

Euler method: 1
1 1 1

1
1 1 1 1

1

1

/

/

i i i

i i i

i i i
n n n

i i i
n n n n

m
t

m

+

+

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x v

v v f

x x v

v v f

M M M

25

Bouncing off the walls
• Add-on for a particle simulator
• For now, just simple point-plane

collisions

26

Normal and tangential components

N

V
V TV

NV

()N

T N

= ⋅
= −

V N V N
V V V

P

27

Collision Detection

N

V

()
0

ε− ⋅ <
⋅ <

X P N
N V

P

X

Within ε of the wall
Heading in

28

Collision Response

V TV

NV

T r Nk′ = −V V V

′VTV

r Nk− V

before after

29

Artificial Fish

30

Related Research
• Determining dynamic parameters for cloth simulation

31

Summary
What you should take away from this lecture:

– The meanings of all the boldfaced terms
– Euler method for solving differential equations
– Combining particles into a particle system
– Physics of a particle system
– Various forces acting on a particle
– Simple collision detection

