Image Processing

Reading
Course Reader:

Jain et. Al. Machine Vision
Chapter 4 and 5

Definitions

Many graphics techniques that operate only on images

Image processing: operations that take images as input,
produce images as output

In its most general form, an image is a function f from R?
toR

— f(x, y) gives the intensity of a channel at position (X, y) defined
over a rectangle, with a finite range:

f: [a,b]x[c,d] = [0,1]

— A color image is just three functions pasted together:

f(xy)=F(xy), (X y), (X, ¥))

Images as Functions




What is a digital image?
* In computer graphics, we usually operate on digital
(discrete) images:
— Sample the space on a regular grid
— Quantize each sample (round to nearest integer)
 If our samples are d apart, we can write this as:

Sampled digital image

f[i, j]=Quantize(f(i-d, j-d))

Image processing Pixel Movement
* An image processing operation typically defines a new » Some operations preserve intensities, but move pixels
image g in terms of an existing image f. around in the image
» The simplest operations are those that transform each pixel
in isolation. These pixel-to-pixel operations can be g(x, y) = f (u(x, y)’ V(X, y))
written:

g(x,y) =t(f(xy))

« Examples: many amusing warps of images
» Example: threshold, RGB — grayscale




Multiple input images

» Some operations define a new image g in terms of n
existing images (fy, f,, ..., f,), where n is greater than 1

e Example: cross-dissolve between 2 input images

g(x,y) =2 w fi(x,y)

Noise

e Common types of noise:

— Salt and pepper noise: contains random occurrences of black and
white pixels

— Impulse noise: contains random occurrences of white pixels

— Gaussian noise: variations in intensity drawn from a Gaussian
normal distribution

Noise Examples

pper noise

Gaussian noise

Ideal noise reduction




Ideal noise reduction

* How can we “smooth” away noise in a single image?

Practical noise reduction
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Cross-correlation filtering

Let’s write this down as an equation. Assume the averaging window is
(2k+1)x(2k+1):
k

1 k
-_— Z Z Fli+u,j+ v]
(Qk + 1)2 u=—kv=—k

We can generalize this idea by allowing different weights for different
neighboring pixels:

k k
Gli,jl= > > Hluv]F[li+wu,j+ ]
u=—kv=-—%k

This is called a cross-correlation operation and written:

H is called the “filter,” “kernel,” or “mask.”

The above allows negative filter indices. When you implement need to
use: H[u+k,v+K] instead of H[u,v]

Gli,j] =

Mean kernel
What’s the kernel for a 3x3 mean filter?
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Gaussian Salt and pepper

Mean Filters IS

Gaussian Filtering

* A Gaussian kernel gives less weight to pixels further from
the center of the window

Flx, v]

« This kernel is an approximation of a

Gaussian function:

Tx7 h 1 _UQ—EUQ
(u,0) = 27r02€ i
Gaussian Filters Convolution

Gaussian filters weigh pixels based on their dlstance to the
location of convolution.

hfi, 1= e—(i2+j2)/20'2

Blurring noise while preserving features of the image
Smoothing the same in all directions

More significance to neighboring pixels

Width parameterized by o

Gaussian functions are separable

Convolving with multiple Gaussian filters results in a
single Gausian filter

« A convolution operation is a cross-correlation where the
filter is flipped both horizontally and vertically before
being applied to the image:

k k
Gli, 7] = Z Z Hlu,v]F[i — u,j — v]

uw=—-kv=—k

o lItiswritten: (7 — H « F'

» Suppose H is a Gaussian or mean kernel. How does
convolution differ from cross-correlation?




Gaussian Salt and pepper
noise noise

Gaussian Filters

3x3 &

5x5 &

7x7

Mean vs. Gaussian filtering

Median Filters

* A Median Filter operates over a k £ k region by selecting
the median intensity in the region.

» What advantage does a median filter have over a mean
filter?

* |s a median filter a kind of convolution?

Gaussian Salt 1

Median Filters

3x3
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Gaussian

Median

Sampling theorem

*This result is known as the Sampling Theorem and is due to
Claude Shannon who first discovered it in 1949:
A signal can be reconstructed from its samples without loss of
information, if the original signal has no frequencies above Y2 the
sampling frequency.
For a given bandlimited function, the minimum rate at
which it must be sampled is the Nyquist frequency.

Reconstruction filters
*The sinc filter, while “ideal”, has two drawbacks:

— It has large support (slow to compute)
— It introduces ringing in practice

*We can choose from many other filters...
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Cubic filters

*Mitchell and Netravali (1988) experimented with cubic
filters, reducing them all to the following form:

(12 -9B-6C)|x|°+(-18+12B+ 6C)|x| + (6 - 2B) |x|< 1
r(x)= é ((-B-6C)|x[°+ (6B +30C)|x|"+ (-12B - 48C)|x|+ (8B +24C) 1< |x|<2
0 otherwise

*The choice of B or C trades off between being too blurry or
having too much ringing. B=C=1/3 was their “visually best”
choice: “Mitchell filter.”




Reconstruction filters in 2D
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Edge detection
*One of the most important uses of image processing is edge detection:
— Really easy for humans
— Really difficult for computers

— Fundamental in computer vision
— Important in many graphics applications
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Edge Detection Gradient
» One of the most important uses of image processing is e The gradient is the 2D equivalent of the derivative:
edge detection
— Really easy for humans of of
— Really difficult for computers Step \%i (X’ y) ol B R
oX ady

— Fundamental in computer vision
— Important in many graphics applications Ramp

» What defines an edge?
Line H

Roof / N\

* Properties of the gradient
— It’s a vector
— Points in the direction of maximum increase of f
— Magnitude is rate of increase

» How can we approximate the gradient in a discrete image?




Less than ideal edges

Pixels plotted —#
300 T

Edge Detection Algorithms

« Edge detection algorithms typically proceed in three or
four steps:

Filtering: cut down on noise

Enhancement: amplify the difference between edges and non-

edges

Detection: use a threshold operation

Localization (optional): estimate geometry of edges beyond pixels

Edge Enhancement

« A popular gradient magnitude computation is the Sobel operator:

—101
Se=|—20 2
—101
1 2 1
s,=| 0 0 0
—1 -2 —1

* We can then compute the magnitude of the vector (s,.s,)

Sobel Operator

Y

Threshold = 64

Threshold = 128




Second derivative operators

threshold

The Sobel operator can produce thick edges. Ideally, we’re looking
for infinitely thin boundaries.

An alternative approach is to look for local extrema in the first
derivative: places where the change in the gradient is highest.

Q: A peak in the first derivative corresponds to what in the second
derivative?

Localization with the Laplacian

» An equivalent measure of the second derivative in 2D is
the Laplacian: 2F  92f

V=St

» Using the same arguments we used to compute the
gradient filters, we can derive a Laplacian filter to be:

 Zero crossings of this filter correspond to positions of
maximum gradient. These zero crossings can be used to
localize edges.

Laplacian alternatives
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Localization with the Laplacian
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Marching squares

» We can convert these signed values into edge contours
using a “marching squares” technique:

Sharpening with the Laplacian

Laplacian (+128)
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Laplacian of Gaussian
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Summary

Formal definitions of image and image processing
Kinds of image processing: pixel-to-pixel, pixel
movement, convolution, others

Types of noise and strategies for noise reduction

Definition of convolution and how discrete convolution
works

The effects of mean, median and Gaussian filtering
How edge detection is done
Gradients and discrete approximations




