Tensor product Bézier surfaces

Given a grid of control points V_i, forming a control net, construct a surface $S(u,v)$ by:

- treating rows of V as control points for curves $V_{i0}(u),…, V_{in}(u)$.
- treating $V_{i0}(u),…, V_{in}(u)$ as control points for a curve parameterized by v.

Building surfaces from curves

Let the geometry vector vary by a second parameter v:

$$ S(u,v) = U \cdot M \cdot g $$

$$ g_i = [g_{i1} \ g_{i2} \ g_{i3} \ g_{i4}]^T $$

Reading

Foley et.al., Section 11.3

Recommended:

Geometry matrices

By transposing the geometry curve we get:

\[
G_i(v)^T = (v \cdot M \cdot g_i)^T \\
= g_i^T \cdot M^T \cdot V^T \\
= \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix} M^T \cdot V^T
\]

Combining

\[
S(u,v) = U \cdot M \begin{bmatrix} G_{11} & G_{12} & G_{13} & G_{14} \\ G_{21} & G_{22} & G_{23} & G_{24} \\ G_{31} & G_{32} & G_{33} & G_{34} \end{bmatrix} M^T \cdot V^T
\]

We get

\[
S(u,v) = U \cdot M \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{34} \end{bmatrix} M^T \cdot V^T
\]

Tensor product surfaces, cont.

Let’s walk through the steps:

Control net

Control curves in \(u \)

Control polygon at \(u \) = 1/2

Curve at \(v \) = 1/2

Which control points are interpolated by the surface?

Bezier Blending Functions

a.k.a. Bernstein polynomials

\[
Q(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = B_3(t) \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix}
\]
Matrix form

Tensor product surfaces can be written out explicitly:

\[S(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} V_{ij} B_i^u(u) B_j^v(v) \]

\[= \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix} M_{B\text{_Bez}} \begin{bmatrix} v^3 \\ u^3 \\ u^2 \\ u \\ 1 \end{bmatrix} \]

Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C2 continuity and local control, we get B-spline curves:

- treat rows of \(B \) as control points to generate Bézier control points in \(u \).
- treat Bézier control points in \(u \) as B-spline control points in \(v \).
- treat B-spline control points in \(v \) to generate Bézier control points in \(u \).

Tensor product B-splines, cont.

Which B-spline control points are interpolated by the surface?
Trimmed NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the u-v domain.

- Define a closed curve in the u-v domain (a trim curve)
- Do not draw the surface points inside of this curve

It’s really hard to maintain continuity in these regions, especially while animating.

Surfaces of revolution

Idea: rotate a 2D profile curve around an axis.

What kinds of shapes can you model this way?

Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
- Morph $C(u)$ into some other curve $C'(u)$ as it moves along $T(v)$.
- ...

Constructing surfaces of revolution

Given: A curve $C(u)$ in the yz-plane:

$$C(u) = \begin{bmatrix} 0 \\ c_z(u) \\ c_y(u) \\ 1 \end{bmatrix}$$

Let $R_x(\theta)$ be a rotation about the x-axis.

Find: A surface $S(u,v)$ which is $C(u)$ rotated about the z-axis.

$$S(u,v) = R_x(v) \cdot C(u)$$
General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface $S(u,v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

$$S(u,v) = T(T(v)) \cdot C(u)$$

More specifically:
- Suppose that $C(u)$ lies in an (x_c, y_c) coordinate system with origin O_c.
- For every point along $T(v)$, lay $C(u)$ so that O_c coincides with $T(v)$.

Orientation

The big issue:
- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:

1. Fixed (or static): Just translate O_c along $T(v)$.
2. Moving. Use the Frenet frame of $T(v)$.
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

$$\hat{i}(v) = \text{normalize}(T'(v))$$
$$\hat{b}(v) = \text{normalize}(T'(v) \times T''(v))$$
$$\hat{n}(v) = \hat{b}(v) \times \hat{i}(v)$$

As we move along $T(v)$, the Frenet frame (i,b,n) varies smoothly.

Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:

1. Put $C(u)$ in the normal plane nb.
2. Place O_c on $T(v)$.
3. Align x_c for $C(u)$ with $-n$.
4. Align y_c for $C(u)$ with b.

If $T(v)$ is a circle, you get a surface of revolution exactly?
Summary

What to take home:
- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces
- Surfaces of revolution
- Construction of swept surfaces from a profile and trajectory curve
 - With a fixed frame
 - With a Frenet frame