Surfaces

Reading
Foley et.al., Section 11.3

Recommended:

Tensor product Bézier surfaces

Given a grid of control points V_{ij}, forming a control net, construct a surface $S(u,v)$ by:
- treating rows of V as control points for curves $V_0(u), \ldots, V_n(u)$.
- treating $V_i(u), \ldots, V_j(u)$ as control points for a curve parameterized by v.

Building surfaces from curves

Let the geometry vector vary by a second parameter v:

$$S(u,v) = U \cdot M \cdot V$$

$$G_i(v) = V \cdot M \cdot \mathbf{g}_i$$

$$\mathbf{g}_i = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}^T$$
Geometry matrices

By transposing the geometry curve we get:

\[
G_i(v)^T = (V \cdot M \cdot g_i)^T
= [g_{i1} \ g_{i2} \ g_{i3} \ g_{i4}] \cdot M^T \cdot V^T
\]

Combining

\[
G_i(v) = [g_{i1} \ g_{i2} \ g_{i3} \ g_{i4}] \cdot M^T \cdot V^T
\]

And

\[
S(u,v) = U \cdot M \cdot [G_i(v)]^T
\]

We get

\[
S(u,v) = U \cdot M \cdot [g_{i1} \ g_{i2} \ g_{i3} \ g_{i4}] \cdot M^T \cdot V^T
\]

Tensor product surfaces, cont.

Let’s walk through the steps:

Bezier Blending Functions

a.k.a. Bernstein polynomials

\[
Q(t) = \begin{bmatrix}
1^3 & 1^2 & 1
\end{bmatrix}
= \begin{bmatrix}
-1 & 3 & -3 & 1
3 & -6 & 3 & 0
-3 & 3 & 0 & 0
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
P_4
\end{bmatrix}
\]

\[
B(t) = \begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
P_4
\end{bmatrix}
\]

Which control points are interpolated by the surface?
Matrix form

Tensor product surfaces can be written out explicitly:

\[S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} V_{ij} B_i^r(u) B_j^s(v) \]

\[= \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix} M_{\text{Bezier}} V M_{\text{Bezier}}^T \begin{bmatrix} u^3 \\ u^2 \\ u \\ 1 \end{bmatrix} \]

Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C2 continuity and local control, we get B-spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.

Tensor product B-splines, cont.

Another example:

Which B-spline control points are interpolated by the surface?
Trimmed NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the \(u-v \) domain.
- Define a closed curve in the \(u-v \) domain (a trim curve)
- Do not draw the surface points inside of this curve.

It’s really hard to maintain continuity in these regions, especially while animating.

Variations

Several variations are possible:
- Scale \(C(u) \) as it moves, possibly using length of \(T(v) \) as a scale factor.
- Morph \(C(u) \) into some other curve \(C'(u) \) as it moves along \(T(v) \).
- …

Surfaces of revolution

Idea: rotate a 2D profile curve around an axis.

What kinds of shapes can you model this way?

Constructing surfaces of revolution

Given: A curve \(C(u) \) in the \(yz \)-plane:

\[
C(u) = \begin{bmatrix}
0 \\
c_c(u) \\
c_s(u) \\
1
\end{bmatrix}
\]

Let \(R_x(\theta) \) be a rotation about the \(x \)-axis.

Find: A surface \(S(u,v) \) which is \(C(u) \) rotated about the \(z \)-axis.

\[
S(u,v) = R_x(v) \cdot C(u)
\]
General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface \(S(u,v) \) by moving a profile curve \(C(u) \) along a trajectory curve \(T(v) \).

\[
S(u,v) = T(T(v)) \cdot C(u)
\]

More specifically:
- Suppose that \(C(u) \) lies in an \((x_c,y_c)\) coordinate system with origin \(O_c \).
- For every point along \(T(v) \), lay \(C(u) \) so that \(O_c \) coincides with \(T(v) \).

Orientation

The big issue:
- How to orient \(C(u) \) as it moves along \(T(v) \)?

Here are two options:
1. Fixed (or static): Just translate \(O_c \) along \(T(v) \).
2. Moving. Use the Frenet frame of \(T(v) \).
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve \(T(v) \), we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

\[
\hat{t}(v) = \text{normalize}(T'(v))
\]

\[
\hat{b}(v) = \text{normalize}(T'(v) \times T''(v))
\]

\[
\hat{n}(v) = \hat{b}(v) \times \hat{t}(v)
\]

As we move along \(T(v) \), the Frenet frame \((\hat{t}, \hat{b}, \hat{n})\) varies smoothly.

Frenet swept surfaces

Orient the profile curve \(C(u) \) using the Frenet frame of the trajectory \(T(v) \):
- Put \(C(u) \) in the normal plane \(nb \).
- Place \(O_c \) on \(T(v) \).
- Align \(x_c \) for \(C(u) \) with \(-n\).
- Align \(y_c \) for \(C(u) \) with \(b \).

If \(T(v) \) is a circle, you get a surface of revolution exactly?
Summary

What to take home:

- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces
- Surfaces of revolution
- Construction of swept surfaces from a profile and trajectory curve
 - With a fixed frame
 - With a Frenet frame