Same problem, different approach

- Monitor process does not query explicitly
- Instead, it passively collects information and uses it to build an observation.
 (reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.
Observations:

a few observations

An observation puts no constraint on the order in which the monitor receives notifications

\[p_0 \rightarrow e_1 \rightarrow p_1 \]
Observations:
a few observations

An observation puts no constraint on the order in which the monitor receives notifications

\[p_0 \rightarrow e_1 \rightarrow p_1 \]

\[e_1^1 \rightarrow e_1^2 \]
Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications.
Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications.

To obtain a run, messages must be delivered to the monitor in FIFO order.
Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications.

To obtain a run, messages must be delivered to the monitor in FIFO order.

What about consistent runs?
Causal delivery

FIFO delivery guarantees:

\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]
Causal delivery

FIFO delivery guarantees:

\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:

\[\text{send}_i(m) \rightarrow \text{send}_k(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]
Causal delivery

FIFO delivery guarantees:

\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:

\[\text{send}_i(m) \rightarrow \text{send}_k(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]
Causal delivery

FIFO delivery guarantees:

\[
sendi(m) \rightarrow sendi(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')
\]

Causal delivery generalizes FIFO:

\[
sendi(m) \rightarrow send_k(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')
\]
Causal delivery

FIFO delivery guarantees:

\[\text{send}_i(m) \to \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \to \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:

\[\text{send}_i(m) \to \text{send}_k(m') \Rightarrow \text{deliver}_j(m) \to \text{deliver}_j(m') \]
Causal delivery

FIFO delivery guarantees:

\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:

\[\text{send}_i(m) \rightarrow \text{send}_k(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]
Causal delivery

FIFO delivery guarantees:
\[\text{send}_i(m) \rightarrow \text{send}_i(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]

Causal delivery generalizes FIFO:
\[\text{send}_i(m) \rightarrow \text{send}_k(m') \Rightarrow \text{deliver}_j(m) \rightarrow \text{deliver}_j(m') \]
Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time.
Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

DR1: At time t, p_0 delivers all messages it received with timestamp up to $t - \Delta$ in increasing timestamp order
Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.
Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.
Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Should p_0 deliver?
Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

![Diagram](image)

Problem: Lamport Clocks don’t provide **gap detection**

Given two events e and e' and their clock values $LC(e)$ and $LC(e')$—where $LC(e) < LC(e')$—determine whether some event e'' exists s.t.

$$LC(e) < LC(e'') < LC(e')$$
Stability

DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

A message \(m \) received by \(p \) is stable at \(p \) if \(p \) will never receive a future message \(m' \) s.t.

\[
TS(m') < TS(m)
\]
Implementing Stability

- Real-time clocks
- Wait for Δ time units
Implementing Stability

- Real-time clocks
 - wait for Δ time units

- Lamport clocks
 - wait on each channel for m s.t. $TS(m) > LC(e)$

- Design better clocks!
Clocks and STRONG Clocks

- Lamport clocks implement the clock condition:
 \[e \rightarrow e' \Rightarrow LC(e) < LC(e') \]

- We want new clocks that implement the strong clock condition:
 \[e \rightarrow e' \equiv SC(e) < SC(e') \]
Causal Histories

The causal history of an event e in (H, \rightarrow) is the set

$$\theta(e) = \{ e' \in H \mid e' \rightarrow e \} \cup \{ e \}$$
Causal Histories

The causal history of an event \(e \) in \((H, \rightarrow)\) is the set

\[
\theta(e) = \{ e' \in H \mid e' \rightarrow e \} \cup \{ e \}
\]
The causal history of an event e in (H, \rightarrow) is the set

$\theta(e) = \{ e' \in H \mid e' \rightarrow e \} \cup \{ e \}$

$e \rightarrow e' \equiv \theta(e) \subset \theta(e')$
How to build $\theta(e)$

Each process p_i:

- initializes $\theta : \theta := \emptyset$

- if e^k_i is an internal or send event, then
 $$\theta(e^k_i) := \{e^k_i\} \cup \theta(e^{k-1}_i)$$

- if e^k_i is a receive event for message m, then
 $$\theta(e^k_i) := \{e^k_i\} \cup \theta(e^{k-1}_i) \cup \theta(\text{send}(m))$$
Pruning causal histories

- Prune segments of history that are known to all processes (Peterson, Bucholz and Schlichting)
- Use a more clever way to encode $\theta(e)$
Vector Clocks

Consider $\theta_i(e)$, the projection of $\theta(e)$ on p_i.

$\theta_i(e)$ is a prefix of h^i: $\theta_i(e) = h^i_{k_i}$ – it can be encoded using k_i.

$\theta(e) = \theta_1(e) \cup \theta_2(e) \cup \ldots \cup \theta_n(e)$ can be encoded using k_1, k_2, \ldots, k_n.

Represent θ using an n-vector VC such that $VC(e)[i] = k \iff \theta_i(e) = h^i_{k_i}$.
Message m is timestamped with $TS(m) = VC(send(m))$

\[VC(e_i) := max(VC, TS(m)) \]

\[VC(e_i)[i] := VC[i] + 1 \]
Example

p_1 [1,0,0] [2,1,0] [3,1,2] [4,1,2] [5,1,2]

p_2 [0,1,0] [1,2,3] [4,3,3]

p_3 [1,0,1] [1,0,2] [1,0,3] [5,1,4]
Operational interpretation

\[VC(e_i)[i] = \]
\[VC(e_i)[j] = \]
Operational interpretation

$VC(e_i)[i] = \text{no. of events executed by } p_i \text{ up to and including } e_i$

$VC(e_i)[j] = $
Operational interpretation

$\text{Operational interpretation}$

$VC(e_i)[i] = \text{no. of events executed by } p_i \text{ up to and including } e_i$

$VC(e_i)[j] = \text{no. of events executed by } p_j \text{ that happen before } e_i \text{ of } p_i$
VC properties: event ordering

Given two vectors V and V', less than is defined as:

$$V < V' \equiv (V \neq V') \land (\forall k : 1 \leq k \leq n : V[k] \leq V'[k])$$

- **Strong Clock Condition:** $e \rightarrow e' \equiv VC(e) \leq VC(e')$

- **Simple Strong Clock Condition:**

 Given e_i of p_i and e_j of p_j, where $i \neq j$

 $$e_i \rightarrow e_j \equiv VC(e_i)[i] \leq VC(e_j)[i]$$

- **Concurrency**

 Given e_i of p_i and e_j of p_j, where $i \neq j$

 $$e_i \parallel e_j \equiv (VC(e_i)[i] > VC(e_j)[i]) \land (VC(e_j)[j] > VC(e_i)[j])$$
VC properties: consistency

Pairwise inconsistency
Events e_i of p_i and e_j of p_j ($i \neq j$) are pairwise inconsistent (i.e., can’t be on the frontier of the same consistent cut) if and only if

$$\forall i, j : 1 \leq i, j \leq n : (VC(e_i^c)[i] \geq VC(e_j^c)[i])$$

Consistent Cut
A cut defined by (c_1, \ldots, c_n) is consistent if and only if

$$\forall i, j : 1 \leq i, j \leq n : (VC(e_i^{c_i})[i] \geq VC(e_j^{c_j})[i])$$
VC properties: weak gap detection

Weak gap detection
Given e_i of p_i and e_j of p_j, if $VC(e_i)[k] < VC(e_j)[k]$ for some $k \neq j$, then there exists e_k s.t

$$- (e_k \rightarrow e_i) \land (e_k \rightarrow e_j)$$

- p_i [2,0,1]
- p_j [2,2,2]
- p_k [0,0,2]
VC properties: weak gap detection

Weak gap detection
Given e_i of p_i and e_j of p_j, if $VC(e_i)[k] < VC(e_j)[k]$ for some $k \neq j$, then there exists e_k s.t

$$\neg(e_k \rightarrow e_i) \land (e_k \rightarrow e_j)$$
VC properties: strong gap detection

Weak gap detection
Given e_i of p_i and e_j of p_j, if $VC(e_i)[k] < VC(e_j)[k]$ for some $k \neq j$, then there exists e_k s.t.

$$-(e_k \rightarrow e_i) \land (e_k \rightarrow e_j)$$

Strong gap detection
Given e_i of p_i and e_j of p_j, if $VC(e_i)[i] < VC(e_j)[i]$ then there exists e'_i s.t.

$$(e_i \rightarrow e'_i) \land (e'_i \rightarrow e_j)$$
VCs for Causal Delivery

- Each process increments the local component of its VC only for events that are notified to the monitor.
- Each message notifying event e is timestamped with $VC(e)$.
- The monitor keeps all notification messages in a set M.