Global Predicate Detection and Event Ordering
Our Problem

To compute predicates over the state of a distributed application
Model

- Message passing
- No failures
- Two possible timing assumptions:
 1. Synchronous System
 2. Asynchronous System
 - No upper bound on message delivery time
 - No bound on relative process speeds
 - No centralized clock
Asynchronous systems

- Weakest possible assumptions
- cfr. “finite progress axiom”
- Weak assumptions \equiv less vulnerabilities
- Asynchronous \neq slow
- “Interesting” model w.r.t. failures (ah ah ah ah!)
Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

A client requests a service by sending the server a message. The client blocks while waiting for a response.
Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

A client requests a service by sending the server a message. The client blocks while waiting for a response.

The server computes the response (possibly asking other servers) and returns it to the client.
Deadlock!
Goal

Design a protocol by which a processor can determine whether a global predicate (say, deadlock) holds
Wait-For Graphs

Draw arrow from p_i to p_j if p_j has received a request but has not responded yet.
Wait-For Graphs

- Draw arrow from p_i to p_j if p_j has received a request but has not responded yet.

- Cycle in WFG \Rightarrow deadlock

- Deadlock \Rightarrow cycle in WFG
The protocol

p_0 sends a message to $p_1 \ldots p_3$

On receipt of p_0's message, p_i replies with its state and wait-for info
An execution
An execution
An execution

Ghost Deadlock!
Houston, we have a problem...

- Asynchronous system
 - no centralized clock, etc. etc.
- Synchrony useful to
 - coordinate actions
 - order events
- Mmmmhhhh...
Events and Histories

- Processes execute sequences of events.
- Events can be of 3 types: local, send, and receive.
- e^i_p is the i-th event of process p.
- The local history h_p of process p is the sequence of events executed by process p.
- h^k_p: prefix that contains first k events.
- h^0_p: initial, empty sequence.
- The history H is the set $h^0_p \cup h^1_p \cup \ldots h^{p_{n-1}}$.

NOTE: In H, local histories are interpreted as sets, rather than sequences, of events.
Observation 1:

Events in a local history are **totally ordered**.
Observation 1:
Events in a local history are **totally ordered**

Observation 2:
For every message \(m \), \(\text{send}(m) \) precedes \(\text{receive}(m) \)
Happened-before
(Lamport[1978])

A binary relation \rightarrow defined over events

1. if $e_i^k, e_i^l \in h_i$ and $k < l$, then $e_i^k \rightarrow e_i^l$

2. if $e_i = send(m)$ and $e_j = receive(m)$, then $e_i \rightarrow e_j$

3. if $e \rightarrow e'$ and $e' \rightarrow e''$ then $e \rightarrow e''$
Space-Time diagrams

A graphic representation of a distributed execution
Space-Time diagrams

A graphic representation of a distributed execution
Space-Time diagrams

A graphic representation of a distributed execution
Space-Time diagrams

A graphic representation of a distributed execution
Space-Time diagrams

A graphic representation of a distributed execution

H and \rightarrow impose a partial order
Space-Time diagrams

A graphic representation of a distributed execution

H and → impose a partial order
Space-Time diagrams

A graphic representation of a distributed execution

H and \rightarrow impose a partial order
Space-Time diagrams

A graphic representation of a distributed execution

H and \(\rightarrow \) impose a partial order
Runs and Consistent Runs

- A **run** is a total ordering of the events in H that is consistent with the local histories of the processors.
- **Ex:** h_1, h_2, \ldots, h_n is a run.

- A run is **consistent** if the total order imposed in the run is an extension of the partial order induced by \rightarrow.

- A single distributed computation may correspond to several consistent runs!
A cut C is a subset of the global history of H

$$C = h_1^{c_1} \cup h_2^{c_2} \cup \ldots h_n^{c_n}$$
A cut C is a subset of the global history of H

$$C = h_{1}^{c1} \cup h_{2}^{c2} \cup \ldots h_{n}^{cn}$$

The frontier of C is the set of events

$$e_{1}^{c1}, e_{2}^{c2}, \ldots e_{n}^{cn}$$
Global states and cuts

- The **global state** of a distributed computation is an \(n \)-tuple of local states
 \[
 \Sigma = (\sigma_1, \ldots, \sigma_n)
 \]

- To each cut \((c_1, \ldots, c_n)\) corresponds a global state \((\sigma_1^{c_1}, \ldots, \sigma_n^{c_n})\)
Consistent cuts and consistent global states

A cut is consistent if

$$\forall e_i, e_j : e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$$

A consistent global state is one corresponding to a consistent cut
What p_0 sees
What p_0 sees

Not a consistent global state: the cut contains the event corresponding to the receipt of the last message by p_3 but not the corresponding send event.
Our task

- Develop a protocol by which a processor can build a consistent global state
- Informally, we want to be able to take a snapshot of the computation
- Not obvious in an asynchronous system...
Our approach

- Develop a simple synchronous protocol
- Refine protocol as we relax assumptions
- Record:
 - processor states
 - channel states
- Assumptions:
 - FIFO channels
 - Each m timestamped with $T(send(m))$
Snapshot I

i. \(p_0 \) selects \(t_{ss} \)

ii. \(p_0 \) sends “take a snapshot at \(t_{ss} \)” to all processes

iii. when clock of \(p_i \) reads \(t_{ss} \) then \(p \)
 a. records its local state \(\sigma_i \)
 b. starts recording messages received on each of incoming channels
 c. stops recording a channel when it receives first message with timestamp greater than or equal to \(t_{ss} \)
Snapshot I

i. \(p_0 \) selects \(t_{ss} \)

ii. \(p_0 \) sends “take a snapshot at \(t_{ss} \)” to all processes

iii. when clock of \(p_i \) reads \(t_{ss} \) then \(p \)
 a. records its local state \(\sigma_i \)
 b. sends an empty message along its outgoing channels
 c. starts recording messages received on each of incoming channels
 d. stops recording a channel when it receives first message with timestamp greater than or equal to \(t_{ss} \)
Correctness

Theorem
Snapshot I produces a consistent cut

Proof

Need to prove \(e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C \)

- **< Definition >**
 0. \(e_j \in C \equiv T(e_j) < t_{ss} \)
 1. \(e_j \in C \)
 2. \(e_i \rightarrow e_j \)
 3. \(T(e_j) < t_{ss} \)
 4. \(e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j) \)
 5. \(T(e_i) < T(e_j) \)
 6. \(T(e_i) < t_{ss} \)
 7. \(e_i \in C \)

- **< Assumption >**
 2. \(e_i \rightarrow e_j \)

- **< Property of real time>**
 5. \(T(e_i) < T(e_j) \)

- **< 0 and 1>**

- **< 5 and 3>**

- **< Definition >**

- **< 2 and 4>**
Clock Condition

< Property of real time>

4. $e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$

Can the Clock Condition be implemented some other way?
Each process maintains a local variable LC

$LC(e) \equiv$ value of LC for event e

$L_C(e_i^p) < L_C(e_{i+1}^p)$

$L_C(e_i^p) < L_C(e_j^q)$
Increment Rules

\[LC(e_{p}^{i+1}) = LC(e_{p}^{i}) + 1 \]

\[LC(e_{q}^{j}) = max(LC(e_{q}^{j-1}), LC(e_{p}^{i})) + 1 \]

Timestamp \(m \) with \(TS(m) = LC(send(m)) \)
Space-Time Diagrams and Logical Clocks
A subtle problem

when $LC = t$ do S

doesn’t make sense for Lamport clocks!

there is no guarantee that LC will ever be t

S is anyway executed after $LC = t$

Fixes:

if e is internal/send and $LC = t - 2$

- execute e and then S

if $e = receive(m) \land (TS(m) \geq t) \land (LC \leq t - 1)$

- put message back in channel
- re-enable e ; set $LC = t - 1$; execute S
An obvious problem

- No t_{ss}!

- Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks
An obvious problem

No t_{ss}!

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

$mmmmmhhhh...$
An obvious problem

- No t_{ss}!

- Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

 mmmmmhhhh...

- Doing so assumes
 - upper bound on message delivery time
 - upper bound relative process speeds

 We better relax it...
Snapshot II

- Processor p_0 selects Ω

- p_0 sends “take a snapshot at Ω” to all processes; it waits for all of them to reply and then sets its logical clock to Ω

- When clock of p_i reads Ω then p_i
 - records its local state σ_i
 - sends an empty message along its outgoing channels
 - starts recording messages received on each incoming channel
 - stops recording a channel when receives first message with timestamp greater than or equal to Ω
Relaxing synchrony

Process does nothing for the protocol during this time!

Take a snapshot at Ω

$TS(m) \geq \Omega$

Records local state σ_i

Sends empty message:

$TS(m) \geq \Omega$

Use empty message to announce snapshot!
Snapshot III

- Processor \(p_0 \) sends itself “take a snapshot“.

- When \(p_i \) receives “take a snapshot“ for the first time from \(p_j \):
 - Records its local state \(\sigma_i \).
 - Sends “take a snapshot“ along its outgoing channels.
 - Sets channel from \(p_j \) to empty.
 - Starts recording messages received over each of its other incoming channels.

- When \(p_i \) receives “take a snapshot“ beyond the first time from \(p_k \):
 - Stops recording channel from \(p_k \).

- When \(p_i \) has received “take a snapshot“ on all channels, it sends collected state to \(p_0 \) and stops.
Snapshots: a perspective

The global state Σ^s saved by the snapshot protocol is a consistent global state
Snapshots: a perspective

- The global state Σ^s saved by the snapshot protocol is a consistent global state.
- But did it ever occur during the computation?
 - A distributed computation provides only a partial order of events.
 - Many total orders (runs) are compatible with that partial order.
 - All we know is that Σ^s could have occurred.
Snapshots: a perspective

- The global state Σ^s saved by the snapshot protocol is a consistent global state.
- But did it ever occur during the computation?
 - A distributed computation provides only a partial order of events.
 - Many total orders (runs) are compatible with that partial order.
 - All we know is that Σ^s could have occurred.
- We are evaluating predicates on states that may have never occurred!
An Execution and its Lattice
An Execution and its Lattice

\[\Sigma^{00} \]
An Execution and its Lattice

\[\Sigma \]

\[\Sigma^{10} \rightarrow \Sigma^{01} \rightarrow \Sigma^{02} \]

\[\Sigma^{21} \rightarrow \Sigma^{12} \rightarrow \Sigma^{22} \rightarrow \Sigma^{32} \]

\[p_1 \]

\[p_2 \]

\[e_1^1 \rightarrow e_1^2 \rightarrow e_1^3 \rightarrow e_1^4 \rightarrow e_1^5 \rightarrow e_1^6 \]

\[e_2^1 \rightarrow e_2^2 \rightarrow e_2^3 \rightarrow e_2^4 \rightarrow e_2^5 \rightarrow e_2^6 \]
An Execution and its Lattice
An Execution and its Lattice
An Execution and its Lattice
Reachability

\(\Sigma^{kl} \) is reachable from \(\Sigma^{ij} \) if there is a path from \(\Sigma^{kl} \) to \(\Sigma^{ij} \) in the lattice.
Reachability

Σ^{kl} is reachable from Σ^{ij} if there is a path from Σ^{kl} to Σ^{ij} in the lattice.
Reachability

Σ^{kl} is reachable from Σ^{ij} if there is a path from Σ^{kl} to Σ^{ij} in the lattice
Reachability

\(\Sigma^{kl} \) is reachable from \(\Sigma^{ij} \) if there is a path from \(\Sigma^{kl} \) to \(\Sigma^{ij} \) in the lattice

\(\Sigma^{ij} \leadsto \Sigma^{kl} \)
So, why do we care about Σ^s again?

- Deadlock is a stable property

$$\text{Deadlock} \Rightarrow \square \text{Deadlock}$$

- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f, then $\Sigma^i \leadsto^R \Sigma^f$
So, why do we care about Σ^s again?

- Deadlock is a stable property

 Deadlock $\Rightarrow \square$ Deadlock

- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f, then $\Sigma^i \rightsquigarrow_R \Sigma^f$

- Deadlock in Σ^s implies deadlock in Σ^f
So, why do we care about Σ^s again?

- Deadlock is a **stable property**

 Deadlock \Rightarrow \Box Deadlock

- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f, then $\Sigma^i \sim_R \Sigma^f$

- Deadlock in Σ^s implies deadlock in Σ^f

- No deadlock in Σ^s implies no deadlock in Σ^i
Same problem, different approach

Monitor process does not query explicitly.

Instead, it passively collects information and uses it to build an observation. (reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.