Paxos
The Part-Time Parliament

- Parliament determines laws by passing sequence of numbered decrees.
- Legislators can leave and enter the chamber at arbitrary times.
- No centralized record of approved decrees—instead, each legislator carries a ledger.
Government 101

- No two ledgers contain contradictory information.
- If a majority of legislators were in the Chamber and no one entered or left the Chamber for a sufficiently long time, then:
 - Any decree proposed by a legislator would eventually be passed.
 - Any passed decree would appear on the ledger of every legislator.
Supplies

Each legislator receives

- ledger
- pen with indelible ink
- scratch paper
- hourglass
- lots of messengers
Back to the future

- A set of processes that can propose values
- Processes can crash and recover
- Processes have access to stable storage
- Asynchronous communication via messages
- Messages can be lost and duplicated, but not corrupted
The Game: Consensus

SAFETY

- Only a value that has been proposed can be chosen
- Only a single value is chosen
- A process never learns that a value has been chosen unless it has been

LIVENESS

- Some proposed value is eventually chosen
- If a value is chosen, a process eventually learns it
The Players

- Proposers
- Acceptors
- Learners
Choosing a value

Use a single acceptor
Choosing a value

Use a single acceptor
What if the acceptor fails?
What if the acceptor fails?

Choose only when a “large enough” set of acceptors accepts
What if the acceptor fails?

- Choose only when a "large enough" set of acceptors accepts.
- Using a majority set guarantees that at most one value is chosen.
What if the acceptor fails?

- Choose only when a “large enough” set of acceptors accepts
- Using a majority set guarantees that at most one value is chosen

6
What if the acceptor fails?

Choose only when a “large enough” set of acceptors accepts.

Using a majority set guarantees that at most one value is chosen.
What if the acceptor fails?

Choose only when a “large enough” set of acceptors accepts

Using a majority set guarantees that at most one value is chosen

6 is chosen!
Accepting a value

Suppose only one value is proposed by a single proposer.

That value should be chosen!

First requirement:

P1: An acceptor must accept the first proposal that it receives
Accepting a value

Suppose only one value is proposed by a single proposer.

That value should be chosen!

First requirement:

P1: An acceptor must accept the first proposal that it receives

...but what if we have multiple proposers, each proposing a different value?
P1 + multiple proposers
P1 + multiple proposers
P1 + multiple proposers

No value is chosen!
Handling multiple proposals

- Acceptors must accept more than one proposal.

- To keep track of different proposals, assign a natural number to each proposal.
 - A proposal is then a pair \((psn, \text{value})\).
 - Different proposals have different \(psn\).
 - A proposal is chosen when it has been accepted by a majority of acceptors.
 - A value is chosen when a single proposal with that value has been chosen.
Choosing a unique value

We need to guarantee that all chosen proposals result in choosing the same value

We introduce a second requirement (by induction on the proposal number):

P2. If a proposal with value \(v \) is chosen, then every higher-numbered proposal that is chosen has value \(v \)

which can be satisfied by:

P2a. If a proposal with value \(v \) is chosen, then every higher-numbered proposal accepted by any acceptor has value \(v \)
What about P1?
What about P1?

Do we still need P1?
What about P1?

Do we still need P1?

YES, to ensure that *some* proposal is accepted
What about P1?

- Do we still need P1?
 - YES, to ensure that *some* proposal is accepted

- How well do P1 and P2a play together?
What about P1?

- Do we still need P1?
 - **YES**, to ensure that some proposal is accepted

- How well do P1 and P2a play together?
 - Asynchrony is a problem...
What about P1?

- Do we still need P1?
 - YES, to ensure that *some* proposal is accepted

- How well do P1 and P2a play together?
 - Asynchrony is a problem...
What about P1?

- Do we still need P1? **YES**, to ensure that some proposal is accepted

- How well do P1 and P2a play together? Asynchrony is a problem...

6 is chosen!
What about P1?

- How does it know it should not accept?
- Do we still need P1?
 - YES, to ensure that some proposal is accepted
- How well do P1 and P2a play together?
 - Asynchrony is a problem...

6 is chosen!
Another take on P2

Recall P2a:

If a proposal with value v is chosen, then every higher-numbered proposal accepted by any acceptor has value v

We strengthen it to:

P2b: If a proposal with value v is chosen, then every higher-numbered proposal issued by any proposer has value v
Implementing P2 (I)

P2b: If a proposal with value ν is chosen, then every higher-numbered proposal issued by any proposer has value ν

Suppose a proposer p wants to issue a proposal numbered n. What value should p propose?

If (n',ν) with $n' < n$ is chosen, then in every majority set S of acceptors at least one acceptor has accepted (n',ν)...

...so, if there always exists a majority set S where no acceptor has accepted a proposal with number less than n, then p can propose any value
Implementing P2 (II)

P2b: If a proposal with value ν is chosen, then every higher-numbered proposal issued by any proposer has value ν

What if for all S some acceptor ends up accepting a pair (n',ν) with $n' < n$?

Claim: p should propose the value of the highest numbered proposal among all accepted proposals numbered less than n

Proof: By induction on the number of proposals issued after a proposal is chosen
Implementing P2 (III)

P2b: If a proposal with value ν is chosen, then every higher-numbered proposal issued by any proposer has value ν.

Achieved by enforcing the following invariant:

P2c: For any ν and n, if a proposal with value ν and number n is issued, then there is a set S consisting of a majority of acceptors such that either:

- no acceptor in S has accepted any proposal numbered less than n, or
- ν is the value of the highest-numbered proposal among all proposals numbered less than n accepted by the acceptors in S.
P2c in action

No acceptor in S has accepted any proposal numbered less than n.
P2c in action

ν is the value of the highest-numbered proposal among all proposals numbered less than n and accepted by the acceptors in S.
ν is the value of the highest-numbered proposal among all proposals numbered less than n and accepted by the acceptors in S
P2c in action

\(\nu \) is the value of the highest-numbered proposal among all proposals numbered less than \(n \) and accepted by the acceptors in \(S \)

The invariant is violated
Future telling?

To maintain P2c, a proposer that wishes to propose a proposal numbered \(n \) must learn the highest-numbered proposal with number less than \(n \), if any, that has been or will be accepted by each acceptor in some majority of acceptors.
Future telling?

To maintain P2c, a proposer that wishes to propose a proposal numbered \(n \) must learn the highest-numbered proposal with number less than \(n \), if any, that has been or will be accepted by each acceptor in some majority of acceptors.

Avoid predicting the future by extracting a promise from a majority of acceptors not to subsequently accept any proposals numbered less than \(n \).
The proposer’s protocol (I)

A proposer chooses a new proposal number n and sends a request to each member of some set of acceptors, asking it to respond with:

a. A promise never again to accept a proposal numbered less than n, and

b. The accepted proposal with highest number less than n if any.

...call this a prepare request with number n
The proposer’s protocol (II)

- If the proposer receives a response from a majority of acceptors, then it can issue a proposal with number n and value v, where v is
 a. the value of the highest-numbered proposal among the responses, or
 b. is any value selected by the proposer if responders returned no proposals

A proposes issues a proposal by sending, to some set of acceptors, a request that the proposal be accepted. ...call this an accept request.
The acceptor’s protocol
The acceptor’s protocol

An acceptor receives prepare and accept requests from proposers. It can ignore these without affecting safety.
The acceptor’s protocol

- An acceptor receives prepare and accept requests from proposers. It can ignore these without affecting safety.

- It can always respond to a prepare request
The acceptor’s protocol

- An acceptor receives **prepare** and **accept** requests from proposers. It can ignore these without affecting safety.

- It can always respond to a **prepare** request.
- It can respond to an **accept** request, accepting the proposal, iff it has not promised not to, e.g.
The acceptor’s protocol

An acceptor receives prepare and accept requests from proposers. It can ignore these without affecting safety.

- It can always respond to a prepare request.
- It can respond to an accept request, accepting the proposal, iff it has not promised not to, e.g.

P1a: An acceptor can accept a proposal numbered n iff it has not responded to a prepare request having number greater than n.
The acceptor’s protocol

An acceptor receives prepare and accept requests from proposers. It can ignore these without affecting safety.

- It can always respond to a prepare request.
- It can respond to an accept request, accepting the proposal, iff it has not promised not to, e.g.

P1a: An acceptor can accept a proposal numbered n iff it has not responded to a prepare request having number greater than n.

...which subsumes P1.
Small optimizations

If an acceptor receives a prepare request \(r \) numbered \(n \) when it has already responded to a prepare request for \(n' > n \), then the acceptor can simply ignore \(r \).

An acceptor can also ignore prepare requests for proposals it has already accepted

...so an acceptor needs only remember the highest numbered proposal it has accepted and the number of the highest-numbered prepare request to which it has responded.

This information needs to be stored on stable storage to allow restarts.
Choosing a value:
Phase 1

♫ A proposer chooses a new n and sends $<\text{prepare}, n>$ to a majority of acceptors

♫ If an acceptor a receives $<\text{prepare}, n'>$, where $n' > n$ of any $<\text{prepare}, n>$ to which it has responded, then it responds to $<\text{prepare}, n'>$ with

 ☐ a promise not to accept any more proposals numbered less than n'

 ☐ the highest numbered proposal (if any) that it has accepted
Choosing a value:
Phase 2

If the proposer receives a response to \(<\text{prepare}, n>\) from a majority of acceptors, then it sends to each \(<\text{accept}, n, v>\), where \(v\) is either
- the value of the highest numbered proposal among the responses
- any value if the responses reported no proposals

If an acceptor receives \(<\text{accept}, n, v>\), it accepts the proposal unless it has in the meantime responded to \(<\text{prepare}, n'>\), where \(n' > n\)
Learning chosen values (I)

Once a value is chosen, learners should find out about it. Many strategies are possible:

i. Each acceptor informs each learner whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner, who informs the other learners

iii. Something in between (a set of not-quite-as-distinguished learners)
Because of failures (message loss and acceptor crashes) a learner may not learn that a value has been chosen.

Was 6 chosen?
Learning chosen values (II)

Because of failures (message loss and acceptor crashes) a learner may not learn that a value has been chosen.

Was 6 chosen?

4,8

Was 6 chosen?

7,6

Propose something!
Liveness

Progress is not guaranteed:

\[n_1 < n_2 < n_3 < n_4 < \ldots \]

\begin{itemize}
 \item \texttt{p}_1
 \begin{itemize}
 \item \texttt{propose}, \texttt{n}_1
 \item \texttt{accept}(n_1, v_1)
 \item \texttt{propose}, \texttt{n}_3
 \end{itemize}
 \item \texttt{p}_2
 \begin{itemize}
 \item \texttt{propose}, \texttt{n}_2
 \item \texttt{accept}(n_2, v_2)
 \item \texttt{propose}, \texttt{n}_4
 \end{itemize}
\end{itemize}
Implementing State Machine Replication

Implement a sequence of separate instances of consensus, where the value chosen by the i^{th} instance is the i^{th} message in the sequence.

Each server assumes all three roles in each instance of the algorithm.

Assume that the set of servers is fixed
The role of the leader

In normal operation, elect a single server to be a leader. The leader acts as the distinguished proposer in all instances of the consensus algorithm.

- Clients send commands to the leader, which decides where in the sequence each command should appear.
- If the leader, for example, decides that a client command is the k^{th} command, it tries to have the command chosen as the value in the k^{th} instance of consensus.
A new leader λ is elected...

Since λ is a learner in all instances of consensus, it should know most of the commands that have already been chosen. For example, it might know commands 1-10, 13, and 15.

- It executes phase 1 of instances 11, 12, and 14 and of all instances 16 and larger.

- This might leave, say, 14 and 16 constrained and 11, 12 and all commands after 16 unconstrained.

- λ then executes phase 2 of 14 and 16, thereby choosing the commands numbered 14 and 16.
Stop-gap measures

All replicas can execute commands 1-10, but not 13-16 because 11 and 12 haven't yet been chosen.

λ can either take the next two commands requested by clients to be commands 11 and 12, or can propose immediately that 11 and 12 be no-op commands.

λ runs phase 2 of consensus for instance numbers 11 and 12.

Once consensus is achieved, all replicas can execute all commands through 16.
To infinity, and beyond

- λ can efficiently execute phase 1 for infinitely many instances of consensus! (e.g. command 16 and higher)

 - λ just sends a message with a sufficiently high proposal number for all instances

 - An acceptor replies non trivially only for instances for which it has already accepted a value
Paxos and FLP

- Paxos is always safe—despite asynchrony
- Once a leader is elected, Paxos is live.
- “Ciao ciao” FLP?
 - To be live, Paxos requires a single leader
 - “Leader election” is impossible in an asynchronous system (gotcha!)
- Given FLP, Paxos is the next best thing: always safe, and live during periods of synchrony
Around FLP in 80 Slides
Condition-based Consensus

Is it possible to identify the set of conditions on the input values under which consensus is solvable?
Condition-based Consensus

Is it possible to identify the set of conditions on the input values under which consensus is solvable?

- "all processes propose the same value"
- ?
The Model

- n processes, p_1, \ldots, p_n
- At most f can crash, where $0 \leq f < n$
- Shared-memory system
- Memory is organized in arrays (e.g. $X[1, \ldots, n]$)
- $X[j]$ can be read by any p_i thorough $\text{read}(X[j])$
- $X[i]$ can only be written by p_i thorough $\text{write}(v, X[i])$
- p_i can atomically read X thorough $\text{snapshot}(X)$
Given n, f, and a set of input values \mathcal{V}, a condition \mathcal{C} defines the set of all vectors over \mathcal{V} that can be proposed.

An f-fault tolerant protocol solves consensus for a condition \mathcal{C} if in every execution whose input vector J belongs to \mathcal{V}_f^n, the protocol satisfies the following properties:

- **Validity**: A decided value is a proposed value.
- **Agreement**: No two processes decide differently.
- **BestEffort_Termination**: every correct process decides if
 (i) J in \mathcal{C}_f and no more than f failures
 (ii) all processes are correct
 (iii) a process decides
The Problem

Given n, f, and a set of input values \mathcal{V}, a condition C defines the set of all vectors over \mathcal{V} that can be proposed.

An f-fault tolerant protocol solves consensus for a condition C if in every execution whose input vector J belongs to \mathcal{V}^n_f, the protocol satisfies the following properties:

- **Validity:** A decided value is a proposed value
- **Agreement:** No two processes decide differently
- **BestEffort_Termination:** every correct process decides if (i) J in C_f and no more than f failures or (ii) all processes are correct or (iii) a process decides
Theorem 1 If C is f-acceptable, then there exists an f-fault tolerant protocol solving consensus for C.
Acceptable Conditions

Given f and \mathcal{V}, let P be a predicate on \mathcal{V}^n_f, and S a function defined on (not necessarily all) \mathcal{V}^n_f.

A condition C is acceptable if there exists P and S s.t.:

i) $T_{C \rightarrow P} : I \in C \Rightarrow \forall J \in \mathcal{I}_f : P(J)$

ii) $A_{P \rightarrow S} : \forall J_1, J_2 \in \mathcal{V}^n_f :$

$$(J_1 \leq J_2) \land P(J_1) \land P(J_2) \Rightarrow S(J_1) = S(J_2)$$

iii) $V_{P \rightarrow S} : \forall J \in \mathcal{V}^n_f : P(J) \Rightarrow S(J) = \text{a non-}\bot\text{ value of } J$

Given two vectors A and B, we write $A \leq B$ if

$$\forall k : A[k] \neq \bot \Rightarrow A[k] = B[k]$$
The Protocol

(1) \(\text{write}(v_i, V[i]) \)

(2) \(\text{repeat} \ V_i \leftarrow \text{snapshot}(V) \ \text{until} \ \lvert V_i \rvert \geq n - f \)

(3) \(\text{if} \ P(V_i) \ \text{then} \ w_i \leftarrow S(V_i) \ \text{else} \ w_i \leftarrow \top \)

(4) \(\text{write}(w_i, W[i]) \)

(5) \(\text{repeat} \ \forall j \in [1, \ldots, n] \ \text{do} \ W_i[j] \leftarrow \text{read}(W[j]) \)

(6) \(\text{if} \ \exists j : W_i[j] \neq \bot, \top \ \text{then return}(W_i[j]) \)

(7) \(\text{until} \ (\bot \not\in W_i) \)

(8) \(\forall j \in [1, \ldots, n] \ \text{do} \ Y_i[j] \leftarrow \text{read}(V[j]) \)

(9) \(\text{return}(F(Y_i)) \)

Two arrays of atomic registers

\(V[1, \ldots, n] := [\bot, \ldots, \bot] \)

\(W[1, \ldots, n] := [\bot, \ldots, \bot] \)
The Protocol

(1) \(\text{write}(v_i, V[i]) \)
(2) \(\text{repeat } V_i \leftarrow \text{snapshot}(V) \text{ until } |V_i| \geq n-f \)
(3) \(\text{if } P(V_i) \text{ then } w_i \leftarrow S(V_i) \text{ else } w_i \leftarrow \top \)
(4) \(\text{write}(w_i, W[i]) \)
(5) \(\text{repeat } \forall j \in [1, \ldots, n] \text{ do } W_i[j] \leftarrow \text{read}(W[j]) \)
(6) \(\text{if } \exists j : W_i[j] \neq \bot, \top \text{ then return}(W_i[j]) \)
(7) \(\text{until } (\bot \not\in W_i) \)
(8) \(\forall j \in [1, \ldots, n] \text{ do } Y_i[j] \leftarrow \text{read}(V[j]) \)
(9) \(\text{return}(F(Y_i)) \)

- \(p_i \) writes its input in \(V_i \)
- \(p_i \) repeatedly snapshots \(V \) until \(n-f \) processes have written their input values in \(V \)

Two arrays of atomic registers

\[
V[1, \ldots, n] := [\bot, \ldots, \bot]
\]
\[
W[1, \ldots, n] := [\bot, \ldots, \bot]
\]
The Protocol

(1) \text{write}(v_i, V[i])

(2) \textbf{repeat} \quad V_i \leftarrow \text{snapshot}(V) \textbf{ until } |V_i| \geq n-f

(3) \quad \textbf{if } P(V_i) \textbf{ then } w_i \leftarrow S(V_i) \textbf{ else } w_i \leftarrow \top

(4) \quad \text{write}(w_i, W[i])

(5) \quad \textbf{repeat} \forall j \in [1, \ldots, n] \textbf{ do } W_i[j] \leftarrow \text{read}(W[j])

(6) \quad \quad \textbf{if } \exists j : W_i[j] \neq \bot, \top \textbf{ then return}(W_i[j])

(7) \quad \textbf{until} (\bot \not\in W_i)

(8) \quad \forall j \in [1, \ldots, n] \textbf{ do } Y_i[j] \leftarrow \text{read}(V[j])

(9) \quad \text{return}(F(Y_i))

\begin{itemize}
\item \(p_i\) tries to decide, evaluating \(P\)
\item If \(P\) holds, then \(p_i\) can decide \(w_i = S(V_i)\), otherwise it decides \(\top\)
\item In either case, \(p_i\) writes its decision value to \(W_i\) to help other processes decide
\end{itemize}

Two arrays of atomic registers

\begin{align*}
V[1, \ldots, n] & := [\bot, \ldots, \bot] \\
W[1, \ldots, n] & := [\bot, \ldots, \bot]
\end{align*}
The Protocol

1. \(\text{write}(v_i, V[i]) \)
2. \(\text{repeat } V_i \leftarrow \text{snapshot}(V) \text{ until } |V_i| \geq n-f \)
3. if \(P(V_i) \) then \(w_i \leftarrow S(V_i) \) else \(w_i \leftarrow \top \)
4. \(\text{write}(w_i, W[i]) \)
5. \(\text{repeat } \forall j \in [1, \ldots, n] \text{ do } W_i[j] \leftarrow \text{read}(W[j]) \)
6. \(\text{if } \exists j : W_i[j] \neq \bot, \top \text{ then return}(W_i[j]) \)
7. \(\text{until } (\bot \not\in W_i) \)
8. \(\forall j \in [1, \ldots, n] \text{ do } Y_i[j] \leftarrow \text{read}(V[j]) \)
9. \(\text{return}(F(Y_i)) \)

\(p_i \) enters a loop, looking for a decision value other than \(\bot, \top \)

It may never find it: but if \(p_i \) detects all \(\top \), it can still decide!

Two arrays of atomic registers

\(V[1, \ldots, n] := [\bot, \ldots, \bot] \)
\(W[1, \ldots, n] := [\bot, \ldots, \bot] \)
The Protocol

1. \(\text{write}(v_i, V[i]) \)
2. \(\text{repeat} \ V_i \leftarrow \text{snapshot}(V) \ \text{until} \ |V_i| \geq n-f \)
3. \(\text{if} \ P(V_i) \ \text{then} \ w_i \leftarrow S(V_i) \ \text{else} \ w_i \leftarrow \top \)
4. \(\text{write}(w_i, W[i]) \)
5. \(\text{repeat} \ \forall j \in [1, \ldots, n] \ \text{do} \ W_i[j] \leftarrow \text{read}(W[j]) \)
6. \(\text{if} \ \exists j : W_i[j] \neq \bot, \top \ \text{then return}(W_i[j]) \)
7. \(\text{until} \ (\bot \not\in W_i) \)
8. \(\forall j \in [1, \ldots, n] \ \text{do} \ Y_i[j] \leftarrow \text{read}(V[j]) \)
9. \(\text{return}(F(Y_i)) \)

Two arrays of atomic registers
\[V[1, \ldots, n] := [\bot, \ldots, \bot] \]
\[W[1, \ldots, n] := [\bot, \ldots, \bot] \]

- \(p_i \) enters a loop, looking for a decision value other than \(\bot, \top \)
- It may never find it: but if \(p_i \) detects all \(\top \), it can still decide!
- all \(p_j \) must have written their input \(v_j \) to \(V \)
- \(p_i \) decides by applying a deterministic \(F \) to \(V \)
- Note: termination is not guaranteed!
Termination

BestEffort_Termination: every correct process decides if

(i) J in C_f and no more than f failures or
(ii) all processes are correct or
(iii) a process decides

Lemma 1 The protocol satisfies (i)

Proof. Let p_i be a correct process

(1) $\text{write}(v_i, V[i])$
(2) repeat $V_i \leftarrow \text{snapshot}(V)$ until $|V_i| \geq n-f$
(3) if $P(V_i)$ then $w_i \leftarrow S(V_i)$ else $w_i \leftarrow \top$
(4) $\text{write}(w_i, W[i])$
(5) repeat $\forall j \in [1, \ldots, n]$ do $W_i[j] \leftarrow \text{read}(W[j])$
(6) if $\exists j : W_i[j] \neq \bot, \top$ then $\text{return}(W_i[j])$
(7) $\text{until} (\bot \not\in W_i)$
(8) $\forall j \in [1, \ldots, n]$ do $Y_i[j] \leftarrow \text{read}(V[j])$
(9) $\text{return}(F(Y_i))$

i) $T_{C\rightarrow P} : I \in C \Rightarrow \forall J \in I_f : P(J)$

ii) $A_{P\rightarrow S} : \forall J_1, J_2 \in V^n_f :$

$(J_1 \leq J_2) \land P(J_1) \land P(J_2) \Rightarrow S(J_1) = S(J_2)$

iii) $V_{P\rightarrow S} : \forall J \in V^n_f : P(J) \Rightarrow S(J) = \text{a non-}\bot \text{value of } J$
Termination

(1) \(\text{write}(v_i, V[i]) \)
(2) \(\text{repeat} \ V_i \leftarrow \text{snapshot}(V) \ \text{until} \ |V_i| \geq n-f \)
(3) \(\text{if} \ P(V_i) \ \text{then} \ w_i \leftarrow S(V_i) \ \text{else} \ w_i \leftarrow \top \)
(4) \(\text{write}(w_i, W[i]) \)
(5) \(\text{repeat} \ \forall j \in [1, \ldots, n] \ \text{do} \ W_i[j] \leftarrow \text{read}(W[j]) \)
(6) \(\text{if} \ \exists j : W_i[j] \neq \bot, \top \ \text{then return}(W_i[j]) \)
(7) \(\text{until} \ (\bot \not\in W_i) \)
(8) \(\forall j \in [1, \ldots, n] \ \text{do} \ Y_i[j] \leftarrow \text{read}(V[j]) \)
(9) \(\text{return}(F(Y_i)) \)

BestEffort_Termination: every correct process decides if
(i) \(J \) in \(C_f \) and no more than \(f \) failures or
(ii) all processes are correct or
(iii) a process decides

Lemma 1 The protocol satisfies (i)

Proof. Let \(p_i \) be a correct process

\(p_i \) does not block at (2) and therefore gets \(V_i \leq J \)

Since \(J \in C_f \), then \(V_i \in C_f \) from \(T_{C \rightarrow P} \), \(P(V_i) \) is true

At (3), \(w_i \neq \bot, \top \) and at (6), at least \(W_i[i] \neq \bot, \top \)
Termination

(1) \(\text{write}(v_i, V[i]) \)

(2) \(\text{repeat} \ V_i \leftarrow \text{snapshot}(V) \text{ until } |V_i| \geq n-f \)

(3) \(\text{if } P(V_i) \text{ then } w_i \leftarrow S(V_i) \text{ else } w_i \leftarrow \top \)

(4) \(\text{write}(w_i, W[i]) \)

(5) \(\text{repeat} \ \forall j \in [1, \ldots, n] \text{ do } W_i[j] \leftarrow \text{read}(W[j]) \)

(6) \(\text{if } \exists j : W_i[j] \neq \bot, \top \text{ then return}(W_i[j]) \)

(7) \(\text{until } (\bot \not\in W_i) \)

(8) \(\forall j \in [1, \ldots, n] \text{ do } Y_i[j] \leftarrow \text{read}(V[j]) \)

(9) \(\text{return}(F(Y_i)) \)

BestEffort_Termination: every correct process decides if
(i) \(J \) in \(C_f \) and no more than \(f \) failures or
(ii) all processes are correct or
(iii) a process decides

Lemma 2 The protocol satisfies (ii)

Proof. Assume all processes are correct

\(\Box \) They all exit the loop at (2)

\(\Box \) If they all find \(\neg P(V_i) \), they all read \(\top \) at (5) and decide at (9)
Termination

BestEffort_Termination: every correct process decides if
.....

(iii) a process decides

Lemma 3 The protocol satisfies (iii)

Proof. Assume \(p_i \) decides

\(p_i \) (and all correct processes) exit the loop at (2)

\(\square \) If \(p_i \) decides at (6) on \(W_i[j] \neq \top, \bot \), then all correct processes will find the same value and decide (6)

\(\square \) If \(p_i \) decides at (9), every process wrote \(\top \) at (4) and every correct process terminates at (9)

1) \(T_{C \rightarrow P} : I \in \mathcal{C} \Rightarrow \forall J \in \mathcal{I}_f : P(J) \)

2) \(A_{P \rightarrow S} : \forall J_1, J_2 \in \mathcal{V}_f^n : (J_1 \leq J_2) \land P(J_1) \land P(J_2) \Rightarrow S(J_1) = S(J_2) \)

3) \(V_{P \rightarrow S} : \forall J \in \mathcal{V}_f^n : P(J) \Rightarrow S(J) = a \text{ non-} \bot \text{ value of } J \)
Agreement

(1) \(\text{write}(v_i, V[i]) \)

(2) \(\text{repeat } V_i \leftarrow \text{snapshot}(V) \text{ until } |V_i| \geq n-f \)

(3) \(\text{if } P(V_i) \text{ then } w_i \leftarrow S(V_i) \text{ else } w_i \leftarrow \top \)

(4) \(\text{write}(w_i, W[i]) \)

(5) \(\text{repeat } \forall j \in [1, \ldots, n] \text{ do } W_i[j] \leftarrow \text{read}(W[j]) \)

(6) \(\text{if } \exists j : W_i[j] \neq \bot, \top \text{ then return}(W_i[j]) \)

(7) \(\text{until } (\bot \not\in W_i) \)

(8) \(\forall j \in [1, \ldots, n] \text{ do } Y_i[j] \leftarrow \text{read}(V[j]) \)

(9) \(\text{return}(F(Y_i)) \)

Lemma 4 Either all processes that decide do so at (6) or at (9)

Proof. Suppose \(p_i \) decides at (6)

\(\square \) For some \(j \), \(W[j] \neq \bot, \top \)

\(\square \) No process can exit at (7) because its \(W \) contained only \(\top \)

\(\square \) If a process decides, it does so at (6)

\(i) \) \(T_{C\rightarrow P} : I \in C \Rightarrow \forall J \in I_f : P(J) \)

\(ii) \) \(A_{P\rightarrow S} : \forall J_1, J_2 \in V_f^n : (J_1 \leq J_2) \wedge P(J_1) \wedge P(J_2) \Rightarrow S(J_1) = S(J_2) \)

\(iii) \) \(V_P\rightarrow S : \forall J \in V_f^n : P(J) \Rightarrow S(J) = \text{a non-\(\bot \) value of } J \)
Agreement

(1) \text{write}(v_i, V[i])
(2) \text{repeat } V_i \leftarrow \text{snapshot}(V) \text{ until } |V_i| \geq n - f
(3) \text{if } P(V_i) \text{ then } w_i \leftarrow S(V_i) \text{ else } w_i \leftarrow \top
(4) \text{write}(w_i, W[i])
(5) \text{repeat } \forall j \in [1, \ldots, n] \text{ do } W_i[j] \leftarrow \text{read}(W[j])
(6) \text{if } \exists j : W_i[j] \neq \bot, \top \text{ then return}(W_i[j])
(7) \text{until } (\bot \not\in W_i)
(8) \forall j \in [1, \ldots, n] \text{ do } Y_i[j] \leftarrow \text{read}(V[j])
(9) \text{return}(F(Y_i))

Lemma 4 Either all processes that decide do so at (6) or at (9)

\textbf{Proof.} Suppose } p_i \text{ decides at (9)
\begin{itemize}
 \item p_i did exit the loop at (7)
 \item Every process evaluated P to false and wrote \top to W in (4)
 \item No process can decide at (6)
\end{itemize}
Agreement

Lemma 5 No two processes decide differently (Agreement)

Proof. Consider p_i, p_j that decide

- By Lemma 4, they decide on the same line—let it be (6)
- $\exists V_\ell, V_k : S(V_\ell) = w_\ell \neq \bot, \top$ and $S(V_k) = w_k \neq \bot, \top$
- Both $P(V_\ell)$ and $P(V_k)$ hold (1)
- V_ℓ and V_k come from snapshots. Hence $V_\ell \leq V_k \lor V_k \leq V_\ell$ (2)
- From (1), (2), and $A_{P \rightarrow S}$:
 $S(V_\ell) = S(V_k)$ and $w_\ell = w_k$
Agreement

(1) \(\text{write}(v_i, V[i]) \)
(2) \(\text{repeat } V_i \leftarrow \text{snapshot}(V) \text{ until } |V_i| \geq n-f \)
(3) \(\text{if } P(V_i) \text{ then } w_i \leftarrow S(V_i) \text{ else } w_i \leftarrow \top \)
(4) \(\text{write}(w_i, W[i]) \)
(5) \(\text{repeat } \forall j \in [1, \ldots, n] \text{ do } W_i[j] \leftarrow \text{read}(W[j]) \)
(6) \(\text{if } \exists j : W_i[j] \neq \bot, \top \text{ then return}(W_i[j]) \)
(7) \(\text{until } (\bot \not\in W_i) \)
(8) \(\forall j \in [1, \ldots, n] \text{ do } Y_i[j] \leftarrow \text{read}(V[j]) \)
(9) \(\text{return}(F(Y_i)) \)

Lemma 5 No two processes decide differently (Agreement)

Proof. Consider \(p_i, p_j \) that decide

\(\Box \) By Lemma 4, they decide on the same line—let it be (9)

\(\Box \) Each \(p_\ell \) has executed (4): \(W[\ell] \neq \bot \)

\(\Box \) Each \(p_\ell \) has executed (1): \(V[\ell] = v_\ell \)

\(\Box \) Hence \(Y_i = Y_j = (v_1, \ldots, v_n) \)

\(\Box \) Since both processors apply the same deterministic \(F \), agreement follows

\[i) \quad T_{C \rightarrow P} : I \in C \Rightarrow \forall J \in T_f : P(J) \]

\[ii) \quad A_{P \rightarrow S} : \forall J_1, J_2 \in V^n_f : \]
\[(J_1 \leq J_2) \land P(J_1) \land P(J_2) \Rightarrow S(J_1) = S(J_2) \]

\[iii) \quad V_{P \rightarrow S} : \forall J \in V^n_f : P(J) \Rightarrow S(J) = \text{a non-} \bot \text{ value of } J \]
Validity

(1) \(\text{write}(v_i, V[i]) \)
(2) \(\text{repeat} \ V_i \leftarrow \text{snapshot}(V) \text{ until } |V_i| \geq n-f \)
(3) \(\text{if } P(V_i) \text{ then } w_i \leftarrow S(V_i) \text{ else } w_i \leftarrow \top \)
(4) \(\text{write}(w_i, W[i]) \)
(5) \(\text{repeat} \ \forall j \in [1, \ldots, n] \ \text{ do } W_i[j] \leftarrow \text{read}(W[j]) \)
(6) \(\text{if } \exists j: W_i[j] \neq \bot, \top \text{ then return}(W_i[j]) \)
(7) \(\text{until } (\bot \not\in W_i) \)
(8) \(\forall j \in [1, \ldots, n] \ \text{do} \ Y_i[j] \leftarrow \text{read}(V[j]) \)
(9) \(\text{return}(F(Y_i)) \)

Lemma 6 A decided value is a proposed value (\textbf{Validity})

\textbf{Proof.} Suppose \(p_i \) at (6) decides \(W_i[j] = w_j \neq \bot, \top \)

\(\square \) Then, by (3), \(P(V_j) \) holds and, from \(V_{P \rightarrow S} \), \(w_j = S(V_j) = \) a non-\(\bot \) value of \(J \)

i) \(T_{C \rightarrow P} : I \in C \Rightarrow \forall J \in I_f : P(J) \)

ii) \(A_{P \rightarrow S} : \forall J_1, J_2 \in V^n_f : \)
\((J_1 \leq J_2) \land P(J_1) \land P(J_2) \Rightarrow S(J_1) = S(J_2) \)

iii) \(V_{P \rightarrow S} : \forall J \in V^n_f : P(J) \Rightarrow S(J) = \) a non-\(\bot \) value of \(J \)
Validity

Lemma 6 A decided value is a proposed value (Validity)

Proof. Suppose p_i decides at (9)

- Then, by (7), $\forall j : W_i[j] \neq \bot$
- All p_j have written v_j into $V[j]$
- Hence, $Y_i = [v_1, \ldots, v_n]$
- Since F outputs a value of Y_i, Validity follows

\begin{align*}
(1) \quad & \text{write}(v_i, V[i]) \\
(2) \quad & \text{repeat } V_i \leftarrow \text{snapshot}(V) \text{ until } |V_i| \geq n-f \\
(3) \quad & \text{if } P(V_i) \text{ then } w_i \leftarrow S(V_i) \text{ else } w_i \leftarrow \top \\
(4) \quad & \text{write}(w_i, W[i]) \\
(5) \quad & \text{repeat } \forall j \in [1, \ldots, n] \text{ do } W_i[j] \leftarrow \text{read}(W[j]) \\
(6) \quad & \text{if } \exists j : W_i[j] \neq \bot, \top \text{ then return}(W_i[j]) \\
(7) \quad & \text{until } (\bot \not\in W_i) \\
(8) \quad & \forall j \in [1, \ldots, n] \text{ do } Y_i[j] \leftarrow \text{read}(V[j]) \\
(9) \quad & \text{return}(F(Y_i))
\end{align*}

\begin{align*}
& i) \quad T_{C \rightarrow P} : I \in C \Rightarrow \forall J \in \mathcal{I}_f : P(J) \\
& ii) \quad A_{P \rightarrow S} : \forall J_1, J_2 \in V^n_f : \\
& \quad (J_1 \leq J_2) \land P(J_1) \land P(J_2) \Rightarrow S(J_1) = S(J_2) \\
& iii) \quad V_{P \rightarrow S} : \forall J \in V^n_f : P(J) \Rightarrow S(J) = \text{a non-}\bot \text{ value of } J
\end{align*}
It gets really cool...

Theorem 1 If C is f-acceptable, then there exists an f-fault tolerant protocol solving consensus for C.
It gets really cool...

Theorem 1 If C is f-acceptable, then there exists an f-fault tolerant protocol solving consensus for C.

Theorem 2 If there exists an f-fault tolerant protocol solving consensus for C, then C is f-acceptable.
So, how do these conditions look like?

\(C_1 : (I \in C_1) \text{ iff } \#_{1st}(I) - \#_{2nd}(I) > f \)

\(P_1(J) \equiv \#_{1st}(J) - \#_{2nd}(J)) > f - \#_{\perp}(J) \)

\(S_1(J) = a : \#a(J) = \#_{1st}(J) \)

\begin{center}
\hline
\end{center}

\(C_2 : (I \in C_2) \text{ iff } \#_{\max(I)}(I) > f \)

\(P_2(J) \equiv \#_{\max(J)}(J) > f - \#_{\perp}(J) \)

\(S_2(J) = \max(J) \)
The Triumph of Randomization
The Big Picture

Does randomization make for more powerful algorithms?

- Does randomization expand the class of problems solvable in polynomial time?
- Does randomization help compute problems fast in parallel in the PRAM model?
The Big Picture

Does randomization make for more powerful algorithms?

☐ Does randomization expand the class of problems solvable in polynomial time?

☐ Does randomization help compute problems fast in parallel in the PRAM model?

You tell me!
The Triumph of Randomization?

Well, at least for distributed computations!

- no deterministic 1-crash-resilient solution to Consensus

- f-resilient randomized solution to consensus ($f < n/2$) for crash failures

- randomized solution for Consensus exists even for Byzantine failures!
A simple randomized algorithm

M. Ben Or. “Another advantage of free choice: completely asynchronous agreement protocols” (PODC 1983, pp. 27-30)

- exponential number of operations per process
- BUT more practical protocols exist
 - down to $O(n \log^2 n)$ expected operations/process
 - $n-1$ resilient
The protocol's structure

An infinite repetition of asynchronous rounds

- in round \(r \), every \(p \) only handles messages with timestamp \(r \)
- each round has two phases
- in the first, each \(p \) broadcasts an \(a \)-value which is a function of the \(b \)-values collected in the previous round (the first \(a \)-value is the input bit)
- in the second, each \(p \) broadcasts a \(b \)-value which is a function of the collected \(a \)-values
- decide stutters
Ben Or's Algorithm

1: \(a_p := \text{input bit}; \quad r := 1; \)
2: repeat forever
3: \{phase 1\}
4: send \((a_p, r)\) to all
5: Let \(A \) be the multiset of the first \(n-f \) \(a \)-values with timestamp \(r \) received
6: if \((\exists v \in \{0, 1\} : \forall a \in A : a = v) \) then \(b_p := v \)
7: else \(b_p := \bot \)
8: \{phase 2\}
9: send \((b_p, r)\) to all
10: Let \(B \) be the multiset of the first \(n-f \) \(b \)-values with timestamp \(r \) received
11: if \((\exists v \in \{0, 1\} : \forall b \in B : b = v) \) then decide(v); \(a_p := v \)
12: else if \((\exists b \in B : b \neq \bot) \) then \(a_p := b \)
13: else \(a_p := \$ \) \{ \$ is chosen uniformly at random to be 0 or 1\}
14: \(r := r + 1 \)
Validity

1: \(a_p := \text{input bit; } r := 1; \)
2: repeat forever
3: {phase 1}
4: send \((a_p, r)\) to all
5: Let \(A\) be the multiset of the first \(n - f\) a-values with
timestamp \(r\) received
6: if \((\exists v \in \{0, 1\} : \forall a \in A : a = v)\) then \(b_p := v\)
7: else \(b_p := \bot\)
8: {phase 2}
9: send \((b_p, r)\) to all
10: Let \(B\) be the multiset of the first \(n - f\) b-values with
timestamp \(r\) received
11: if \((\exists v \in \{0, 1\} : \forall b \in B : b = v)\) then \(\text{decide}(v)\); \(a_p := v\)
12: else if \((\exists b \in B : b \neq \bot)\) then \(a_p := b\)
13: else \(a_p := \$\) \{\(\$\) is chosen uniformly at random
to be 0 or 1\}
14: \(r := r + 1\)
Validity

Validity

1: \(a_p := \text{input bit}; \ r := 1; \)
2: repeat forever
3: \{phase 1\}
4: send \((a_p, r)\) to all
5: Let A be the multiset of the first \(n - f\) a-values with timestamp \(r\) received
6: if \((\exists v \in \{0, 1\} : \forall a \in A : a = v)\) then \(b_p := v\)
7: else \(b_p := \bot\)
8: \{phase 2\}
9: send \((b_p, r)\) to all
10: Let B be the multiset of the first \(n - f\) b-values with timestamp \(r\) received
11: if \((\exists v \in \{0, 1\} : \forall b \in B : b = v)\) then decide(v); \(a_p := v\)
12: else if \((\exists b \in B : b \neq \bot)\) then \(a_p := b\)
13: else \(a_p := \$_\) \{\$_ is chosen uniformly at random to be 0 or 1\}
14: \(r := r + 1\)

- All identical inputs \((i)\)
- Each process set a-value \(:= i\) and broadcasts it to all
- Since at most \(f\) faulty, every correct process receives at least \(n - f\) identical a-values in round 1
- Every correct process sets b-value \(:= i\) and broadcasts it to all
- Again, every correct process receives at least \(n - f\) identical i b-values in round 1 and decides
A useful observation

1: \(a_p := \text{input bit}; \ r := 1; \)
2: repeat forever
3: \{phase 1\}
4: send \((a_p, r)\) to all
5: Let \(A \) be the multiset of the first \(n - f \) \(a \)-values with timestamp \(r \) received
6: if \(\exists v \in \{0, 1\} : \forall a \in A : a = v \) then \(b_p := v \)
7: else \(b_p := \bot \)
8: \{phase 2\}
9: send \((b_p, r)\) to all
10: Let \(B \) be the multiset of the first \(n - f \) \(b \)-values with timestamp \(r \) received
11: if \(\exists v \in \{0, 1\} : \forall b \in B : b = v \) then \(\text{decide}(v); \ a_p := v \)
12: else if \(\exists b \in B : b \neq \bot \) then \(a_p := b \)
13: else \(a_p := \$ \) \{\(\$ \) is chosen uniformly at random to be 0 or 1\}
14: \(r := r + 1 \)

Lemma For all \(r \), either \(b_p, r \in \{1, \bot\} \) for all \(p \) or \(b_p, r \in \{0, \bot\} \) for all \(p \)
A useful observation

1: \(a_p := \) input bit; \(r := 1; \)
2: repeat forever
3: {phase 1}
4: send \((a_p, r)\) to all
5 Let \(A \) be the multiset of the first \(n−f \) a-values with
timestamp \(r \) received
6: if \((\exists v \in \{0, 1\} : \forall a \in A : a = v)\) then \(b_p := v \)
7: else \(b_p := \bot \)
8: {phase 2}
9: send \((b_p, r)\) to all
10 Let \(B \) be the multiset of the first \(n−f \) b-values with
timestamp \(r \) received
11: if \((\exists v \in \{0, 1\} : \forall b \in B : b = v)\) then decide\((v)\); \(a_p := v \)
12: else if \((\exists b \in B : b \neq \bot)\) then \(a_p := b \)
13: else \(a_p := \$\) \(\{\$ \text{ is chosen uniformly at random} \)
to be 0 or 1\}
14: \(r := r + 1 \)

Lemma For all \(r \), either
\(b_{p, r} \in \{1, \bot\} \) for all \(p \) or
\(b_{p, r} \in \{0, \bot\} \) for all \(p \)

Proof By contradiction.
Suppose \(p \) and \(q \) at round \(r \) such that
\(b_{p, r} = 0 \) and \(b_{q, r} = 1 \)
From lines 6,7 \(p \) received \(n−f \) distinct
0s, \(q \) received \(n−f \) distinct 1s.
Then, \(2(n−f) \leq n \), implying \(n \leq 2f \)

Contradiction

Corollary It is impossible that
two processes \(p \) and \(q \) decide
don different values at round \(r \)
Agreement

Let r be the first round in which a decision is made

Let p be a process that decides in r

1: $a_p := \text{input bit}; \quad r := 1$
2: repeat forever
3: {phase 1}
4: send (a_p, r) to all
5: Let A be the multiset of the first $n-f$ a-values with timestamp r received
6: if $(\exists v \in \{0, 1\} : \forall a \in A : a = v)$ then $b_p := v$
7: else $b_p := \perp$
8: {phase 2}
9: send (b_p, r) to all
10: Let B be the multiset of the first $n-f$ b-values with timestamp r received
11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then $\text{decide}(v); \quad a_p := v$
12: else if $(\exists b \in B : b \neq \perp)$ then $a_p := b$
13: else $a_p := \$ \quad \text{$\$ is chosen uniformly at random to be 0 or 1}$
14: $r := r+1$
Agreement

Let r be the first round in which a decision is made

Let p be a process that decides in r

By the Corollary, no other process can decide on a different value in r

To decide, p must have received $n - f$ “\ddot{i}” from distinct processes

every other correct process has received “\ddot{i}” from at least $n - 2f \geq 1$

By lines 11 and 12, every correct process sets its new a-value to for round $r + 1$ to “\ddot{i}”

By the same argument used to prove Validity, every correct process that has not decided “\ddot{i}” in round r will do so by the end of round $r + 1$

1: $a_p := \text{input bit}; \quad r:= 1$;
2: repeat forever
3: {phase 1}
4: send (a_p, r) to all
5: Let A be the multiset of the first $n - f$ a-values with timestamp r received
6: if $(\exists v \in \{0, 1\} : \forall a \in A : a = v)$ then $b_p := v$
7: else $b_p := \bot$
8: {phase 2}
9: send (b_p, r) to all
10: Let B be the multiset of the first $n - f$ b-values with timestamp r received
11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then decide(v); \quad $ap := v$
12: else if $(\exists b \in B : b \neq \bot)$ then $ap := b$
13: else $ap := \$ \quad \$ is chosen uniformly at random to be 0 or 1
14: $r := r + 1$
Termination I

Remember that by Validity, if all (correct) processes propose the same value “i” in phase 1 of round r, then every correct process decides “i” in round r.

The probability of all processes proposing the same input value (a landslide) in round 1 is

$$\Pr[\text{landslide in round 1}] = \frac{1}{2^n}$$

What can we say about the following rounds?

1: $a_p := \text{input bit}; \quad r := 1$
2: repeat forever
3: {phase 1}
4: send (a_p, r) to all
5: Let A be the multiset of the first $n-f$ a-values with timestamp r received
6: if $(\exists v \in \{0, 1\} : \forall a \in A : a = v)$ then $b_p := v$
7: else $b_p := \bot$
8: {phase 2}
9: send (b_p, r) to all
10: Let B be the multiset of the first $n-f$ b-values with timestamp r received
11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then decide(v); $a_p := v$
12: else if $(\exists b \in B : b \neq \bot)$ then $a_p := b$
13: else $a_p := \$ \quad \{$is chosen uniformly at random to be 0 or 1$}
14: $r := r+1$
Termination II

1: $a_p := $ input bit; $r := 1$
2: repeat forever
3: {phase 1}
4: send (a_p, r) to all
5: Let A be the multiset of the first $n - f$ a-values with timestamp r received
6: if $(\exists v \in \{0, 1\} : \forall a \in A : a = v)$ then $b_p := v$
7: else $b_p := \bot$
8: {phase 2}
9: send (b_p, r) to all
10: Let B be the multiset of the first $n - f$ b-values with timestamp r received
11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then decide(v); $a_p := v$
12: else if $(\exists b \in B : b \neq \bot)$ then $a_p := b$
13: else $a_p := \$ \{\$ is chosen uniformly at random to be 0 or 1\}
14: $r := r + 1$

In round $r > 1$, the a-values are not necessarily chosen at random!
By line 12, some process may set its a-value to a non-random value v
By the Lemma, however, all non-random values are identical!
Therefore, in every r there is a positive probability (at least $1/2^n$) for a landslide
Hence, for any round r

$$\Pr[\text{no landslide at round } r] \leq 1 - 1/2^n$$

Since coin flips are independent:
$$\Pr[\text{no landslide for first } k \text{ rounds}] \leq (1 - 1/2^n)^k$$

When $k = 2^n$, this value is about $1/e$; then, if $k = c2^n$
$$\Pr[\text{landslide within } k \text{ rounds}] \geq 1 - (1 - 1/2^n)^k \approx 1 - 1/e^c$$
which converges quickly to 1 as c grows