
Friday: Global Comprehension for Distributed Replay

Dennis Geels∗, Gautam Altekar‡, Petros Maniatisφ, Timothy Roscoe†, Ion Stoica‡
∗Google, Inc.,‡University of California at Berkeley,φIntel Research Berkeley,†ETH Zürich

Abstract
Debugging and profiling large-scale distributed applica-
tions is a daunting task. We presentFriday, a system
for debugging distributed applications that combines de-
terministic replay of components with the power of sym-
bolic, low-level debugging and a simple language for ex-
pressing higher-level distributed conditions and actions.
Friday allows the programmer to understand the col-
lective state and dynamics of a distributed collection of
coordinated application components.

To evaluateFriday, we consider several distributed
problems, including routing consistency in overlay net-
works, and temporal state abnormalities caused by route
flaps. We show via micro-benchmarks and larger-scale
application measurement thatFriday can be used inter-
actively to debug large distributed applications under re-
play on common hardware.

1 Introduction
Distributed applications are complex, hard to design
and implement, and harder to validate once deployed.
The difficulty derives from the distribution of applica-
tion state across many distinct execution environments,
which can fail individually or in concert, span large ge-
ographic areas, be connected by brittle network chan-
nels, and operate at varying speeds and capabilities. Cor-
rect operation is frequently a function not only of single-
component behavior, but also of the global collection of
states of multiple components. For instance, in a mes-
sage routing application, individual routing tables may
appear correct while the system as a whole exhibits rout-
ing cycles, flaps, wormholes or other inconsistencies.

To face this difficulty, ideally a programmer would be
able to debugthe whole application, inspecting the state
of any component at any point during a debugging ex-
ecution, or even creating custom invariant checkers on
global predicates that can beglobally evaluated continu-
ously as the system runs. In the routing application ex-
ample, a programmer would be able to program her de-

bugger to check continuously that no routing cycles exist
across the running state of the entire distributed system,
as easily as she can read the current state of program vari-
ables in typical symbolic debuggers.
Friday, the system we present in this paper, is a

first step towards realizing this vision.Friday (1) cap-
tures the distributed execution of a system, (2) replays
the captured execution trace within a symbolic debug-
ger, and (3) extends the debugger’s programmability for
complex predicates that involve thewholestate of the re-
played system. To our knowledge, this is the first replay-
based debugging system for unmodified distributed ap-
plications that can track arbitrary global invariants at the
fine granularity of source symbols.

Capture and replay inFriday are performed using
liblog [8], which can record distributed executions and
then replay them consistently. Replay takes place under
the control of a symbolic debugger, which provides ac-
cess to internal application state. But simple replay does
not supply the global system view required to diagnose
emergent misbehavior of the application as a whole.

For global predicate monitoring or replayed applica-
tions (the subject of this paper),Friday combines the
flexibility of symbolic debuggers on each replayed node,
with the power of a general-purpose, embedded script-
ing language, bridging the two to allow a single global
invariant checker script to monitor and control the global
execution of multiple, distinct replayed components.

Contributions: Friday makes two contributions.
First, it provides primitives for detecting events in the
replayed system based on data (watchpoints) or control
flow (breakpoints). These watchpoints and breakpoints
are distributed, coordinating detection across all nodes
in the replayed system, while presenting the abstraction
of operating on the global state of the application.

Second, Friday enables users to attach arbitrary
commandsto distributed watchpoints and breakpoints.
Friday gives these commands access to all application
state as well as a persistent, shared store for saving de-

This paper appears in NSDI 2007. 1

bugging statistics, building behavioral models, or shad-
owing global state.

We have built an instance ofFriday for the popu-
lar GDB debugger, using Python as the script language,
though our techniques are equally applicable to other
symbolic debuggers and interpreted scripting languages.

Applicability: Many distributed applications can ben-
efit from Friday’s functionality, including both fully
distributed systems (e.g., overlays, protocols for repli-
cated state machines) and centrally managed distributed
systems (e.g., load balancers, cluster managers, grid job
schedulers). Developers can evaluate global conditions
during replay to validate a particular execution for cor-
rectness, to catch inconsistencies between a central man-
agement component and the actual state of the distributed
managed components, and to express and iterate behav-
ioral regression tests. For example, with an IP routing
protocol that drops an unusual number of packets, a de-
veloper might hypothesize that the cause is a routing cy-
cle, and useFriday to verify cycle existence. If the hy-
pothesis holds true, the developer can further useFriday

to capture cycle dynamics (e.g., are they transient or
long-lasting?), identify the likely events that cause them
(e.g., router failures or congestion), and finally identify
the root cause by performing step-by-step debugging and
analysis on a few instances involving such events, all
without recompiling or annotating the source code.

Structure: We start with background onliblog in
Section 2. Section 3 presents the design and implemen-
tation ofFriday, and also discusses the limitations of the
system. We then present in Section 4 concrete usage ex-
amples in the context of two distributed applications: the
Chord DHT [25], and a reliable communication toolkit
for Byzantine network faults [26]. We evaluateFriday
both in terms of its primitives and these case studies in
Section 5. Finally, we present related work in Section 6
and conclude in Section 7.

2 Background: liblog
Friday leveragesliblog [8] to deterministically and
consistently replay the execution of a distributed appli-
cation. We give a brief overview here.
liblog is a replay debugging tool for distributed

libc- and POSIX C/C++-based applications on
Linux/x86 computers. To achieve deterministic replay,
each application thread records the side-effects of
all nondeterministic system calls (e.g.,recvfrom(),
select(), etc.) to a local log. This is sufficient to
replay the same execution, reproducing race conditions
and non-deterministic failures, following the same code
paths during replay, as well as the same file and network
I/O, signals, and other IPC.liblog ensures causally
consistent group replay, by maintaining Lamport
clocks [16] during logging.

symbolic
debugger

symbolic
debugger

...

console

process

script

interpreter

application

process

liblog

replay

application

process

liblog

replay

Figure 1:Overall architecture ofFriday

liblog is incrementally deployable—it allows instru-
mented applications to communicate with applications
that are not instrumented (e.g., DNS).liblog also sup-
ports replaying a subset of nodes without having to
gather the logs of all nodes in the distributed system.
Both incremental deployment and partial replay call for
logging all incoming network traffic.

Finally, liblog’s library-based implementation re-
quires neither virtualization nor kernel additions, result-
ing in a small per-process CPU and memory footprint. It
is lightweight enough to comfortably replay 60 nodes on
a Pentium D 2.8GHz machine with 2GB of RAM. We
have also built a proof-of-concept cluster-replay mecha-
nism that can scale this number with the size of the replay
cluster to thousands of nodes.

While liblog provides the programmer with the ba-
sic information and tools for debugging distributed ap-
plications, the process of tracking down the root cause
of a particular problem remains a daunting task. The in-
formation presented byliblog can overwhelm the pro-
grammer, who is put, more often than not, in the position
of finding a “needle in the haystack.”Friday enables
the programmer to prune the problem search space by
expressing complex global conditions on the state of the
whole distributed application.

3 Design
Friday presents to users a central debugging console,
which is connected to replay processes, each of which
runs an instance of a traditional symbolic debugger such
as GDB (see Figure 1). The console includes an embed-
ded script language interpreter, which interprets actions
and can maintain central state for the debugging session.
Most user input is passed directly to the underlying de-
bugger, allowing full access to data analysis and control
functions.Friday extends the debugger’s commands to
handle distributed breakpoints and watchpoints, and to
inspect the whole system of debugged processes.

3.1 Distributed Watchpoints and Break-
points

Traditional watchpoints allow a symbolic debugger to
react—stop execution, display values, or evaluate a pred-

2

icate on the running state—when the process updates a
particular variable location, named via a memory address
or a symbolic name from the application’s source.
Friday’s distributed watchpoints extend this func-

tionality for variables and expressions from multiple
nodes in the replayed distributed application. For ex-
ample, a programmer debugging a ring network can
use Friday to watch a variable calledsuccessor on
all machines by specifying “watch successor” or on a
single machine (here,#4) with “4 watch successor”.
The command “[<node number>, ...] watch <variable>

[...]” specifies both a set of nodes on which to watch
variables (all by default), and a set of variables to watch.
The node numbering is private toFriday; to identify a
particular node by another identifier such as an IP ad-
dress, an appropriate mapping can be provided (Sec-
tion 3.2).

Distributed breakpoints inFriday have a similar fla-
vor. Like traditional breakpoints, they allow the debug-
ger to react when the debugged process executes a par-
ticular instruction, specified as a source line number or
a function name.Friday allows the installation of such
breakpoints on one, several, or all replayed nodes.

3.1.1 Implementation

Friday implements distributed watchpoints and break-
points by setting local instances on each replay process
and mapping their individual numbers and addresses to
a global identifier. These maps are used to rewrite and
forward disable/enable requests to a local instance, and
also to map local events back to the global index when
executing attached commands.

Local breakpoints simply use GDB breakpoints,
which internally either use debugging registers on the
processor or inject trap instructions into the code text.
In contrast,Friday implements its own mechanism for
local watchpoints.Friday uses the familiar technique of
write-protecting the memory page where the value corre-
sponding to a given symbol is stored [29]. When a write
to the variable’s page occurs, the ensuingSEGV signal is
intercepted, leadingFriday to unprotect the page and
completes the write, before evaluating any state manipu-
lation scripts attached to the watchpoint.

This implementation can give rise tofalse positives
when an unwatched variable sharing the page with a
watchpoint is written. The more densely populated a
memory page, the more such false positives occur. We
decided that protection-based watchpoints are preferable
to alternative implementations.

We explored but rejected four alternatives: hardware
watchpoints, single stepping, implementation via break-
points, and time-based sampling.

Hardware watchpointsare offered by many processor
architectures. They are extremely efficient, causing es-

sentially no runtime overhead, but most processors have
small, hard limits on the number of watchpoint regis-
ters (a typical value is 8), as well as on the width of the
watched variable (typically, a single machine word). For
instance, watching for changes to a variable across tens
of replayed nodes would not be possible if the replay
machine has only 8 watchpoint registers. These limits
are too restrictive for distributed predicates; however, we
have planned a hybrid system that uses hardware watch-
points as a cache for our more flexible mechanism.

Single-stepping, or software watchpoints, execute one
machine instruction and check variable modifications at
each step. Unfortunately, single-stepping is prohibitively
slow—we compare it to our method in Section 5.4 and
demonstrate that it is a few thousand times slower.

Local breakpointscan emulate watchpoints by iden-
tifying the points where the watched variable could be
modified and only checking for changes there. When
this identification step is accurate the technique is highly
efficient, but unfortunately it requires comprehensive
knowledge of the program code and is prone to mistakes.

Periodic samplingof watched variables (e.g., every
k logical time ticks) enables a trade-off between replay
speedup and watchpoint accuracy: it is potentially faster
than all the techniques described above, but it may be dif-
ficult to pinpoint value changes. Combined with replay
checkpointing and backtracking, it might prove a valu-
able but not complete alternative.

3.1.2 Implementation Complexity

Building a new watchpoint mechanism inFriday re-
quired reconstructing some functionality normally pro-
vided by the underlying symbolic debugger, GDB.
Namely, debuggers maintain state for each watched
expression, including the stack frame where the vari-
able is located (for local variables) and any muta-
ble subexpressions whose modification might affect the
expression’s value. For example, a watchpoint on
srv->successor->addr should trigger if the pointerssrv or
srv->successor change, pointing the expression to a new
value. Because GDB does not expose this functionality
cleanly, we replicated it inFriday.

Also, the new watchpoint mechanism conflicts with
GDB’s stack maintenance algorithms.Friday’s manip-
ulation of memory page protection on the stack (Sec-
tion 3.1.1) conflicts with GDB’s initialization tasks when
calling application functions, causingmprotect failures.
To resolve the conflict, we replace GDB’s calling facili-
ties with our own, manipulating the application’sPC di-
rectly, thereby complicating GDB’s breakpoint mainte-
nance. Thankfully, these complications are not triggered
by any of our case studies presented in this paper.

3

3.2 Commands
The second crucial feature ofFriday is the ability to
view and manipulate the distributed state of replayed
nodes. These actions can either be performed inter-
actively or triggered automatically by watchpoints or
breakpoints. Interactive commands such asbacktrace

and set are simply passed directly to the named set of
debugger processes. They are useful for exploring the
distributed state of a paused system.

In contrast, automated commands are written in a
scripting language for greater expressiveness. These
commands are typically used to maintain additional
views of the running system to facilitate statistics gather-
ing or to reveal complex distributed (mis)behaviors.
Friday commands can maintain their own arbitrary

debugging state, in order to gather statistics or build
models of global application state. In the examples be-
low, emptySuccessors andnodes are debugging state, de-
clared inFriday via thepython statement; e.g.,python
emptySuccessors = 0. This state is shared among com-
mands and is persistent across command executions.
Friday commands can also read and write vari-

ables in the state of any replayed process, referring
to symbolic names exposed by the local GDB in-
stances. To simplify this access,Friday embeds into
the scripting language appropriate syntax for calling
functions and referencing variables from replayed pro-
cesses. For example, the statement “@4(srv.successor)

== @6(srv.predecessor)” compares the successor vari-
able on node4 to the predecessor variable on node6. By
omitting the node specifier, the programmer refers to the
state on the node where a particular watchpoint or break-
point was triggered. For example, the following com-
mand associated with a watchpoint onsrv.successor in-
crements the debugging variableemptySuccessors when-
ever a successor pointer is set tonull, and continues ex-
ecution:

if not @(srv.successor):

emptySuccessors++

cont

For convenience, the node where a watchpoint or
breakpoint was triggered is also accessible within com-
mand scripts via theNODE metavariable, and all nodes
are available in the list ALL . For example, the
following command, triggered when a node updates
its application-specific identifier variablesrv.node.id,
maintains the global associative arraynodes:

nodes[@(srv.node.id)] = __NODE__

cont

Furthermore,Friday provides commands with access
to the logical time kept by the Lamport clock exported
by liblog, as well as the “real” time recorded at each
log event. Becauseliblog builds a logical clock that

is closely correlated with wall clock during trace ac-
quisition, these two clocks are usually closely synchro-
nized. Friday exposes the global logical clock as the
LOGICALCLOCK metavariable and nodei’s real clock at

the time of trace capture as@i(REALCLOCK).
Similarly to GDB commands, our language allows

setting and resetting distributed watchpoints and break-
points from within a command script. Suchnested
watchpoints and breakpoints can be invaluable in selec-
tively picking features of the execution to monitor in re-
action to current state, for instance to watch a variable
only in between two breakpoints in an execution. This
can significantly reduce the impact of false positives, by
enabling watchpoints only when they are relevant.

3.2.1 Language Choice
The Friday commands triggered by watchpoints and
breakpoints are written in Python, with extensions for in-
teracting with distributed application state.

Evaluating Python insideFriday is straightforward,
because the console is itself a Python application, and
dynamic evaluation is well supported. We chose to de-
velopFriday in Python for its high-level language fea-
tures and ease of prototyping; these benefits also apply
when writing watchpoint command scripts.

We could have used the application’s native language
(C/C++), in much the same way that C is used in In-
troVirt [11]. Such an approach would allow the pro-
grammer to inline predicate code in the language of the
application, thereby simplifying the interface between
C/C++ constructs and a higher-level language. It would
also eliminate the need to rely on GDB and Python for
breakpoint/watchpoint detection and predicate evalua-
tion, thereby reducing IPC-related overhead during re-
play. Unfortunately, this option calls for duplicating
much of the introspection functionality (e.g., inspection
of stack variables) already offered by GDB, and requires
recompiling/reloading a C/C++ predicate library each
time the user changes a predicate; we wanted to support
a more interactive usage model.

At the opposite end of the spectrum, we could have
used GDB’s “command list” functionality to express
distributed watchpoints and breakpoints. Unfortunately
GDB commands lack the expressiveness of Python, such
as its ability to construct new data structures, as well as
the wealth of useful libraries. Using a general-purpose
scripting framework like Python running at the console
afforded us much more flexibility.

3.2.2 Syntax
When a distributed command is entered,Friday exam-
ines every statement to identify references to the target
application state. These references are specified with the
syntax@<node>(<symbol>[=<value>]) where thenode de-
faults to that which triggered the breakpoint or watch-

4

point. These references are replaced with calls to internal
functions that read from or write to the application using
GDB commandsprint andset, respectively. Metavari-
ables such asLOGICALCLOCK are interpolated similarly.
Furthermore,Friday allows commands to refer to appli-
cation objects on the heap whose symbolic names are not
within scope, especially when stopped by a watchpoint
outside the scope within which the watchpoint was de-
fined. Such pointers to heap objects that are not always
nameable can be passed to watchpoint handlers as pa-
rameters at the time of watchpoint definition, much like
continuations (see Section 4.2.1 for a detailed example).
The resulting statements are compiled, saved, and later
executed within the globalFriday namespace and per-
sistent command local namespace.

If the value specified in an embedded assignment in-
cludes keyed printf placeholders, i.e.,%(<name>)<fmt>, the
value of the named Python variable will be interpolated
at assignment time. For example, the command

tempX = @(x)

tempY = @other(y)

@(x=%(tempY)d)

@other(y=%(tempX)d)

swaps the values of integer variablesx at the current node
and y at the node whose number is held in the python
variableother.

Commands may call application functions using simi-
lar syntax:

@<node>(<function>(<arg>,....))

These functions would fail if they attempted to write to a
memory page protected byFriday’s watchpoint mecha-
nism, soFriday conservatively disables all watchpoints
for that replay process during the function call. Unfortu-
nately that precaution may be very costly (see Section 5).
If the user is confident that a function will not modify
protected memory, she may start the command with the
safe keyword, which instructsFriday to leave watch-
points enabled. This option is helpful, for example, if
the invoked function only modifies the stack, and watch-
points are only set on global variables.

The value returned by GDB using the@() operator
must be converted to a Python value for use by the com-
mand script. Friday understands strings (typechar*
or char[]), and coerces pointers and all integer types
to Pythonlong integers. Any other type, including any
structs and class instances, are extracted as a tuple con-
taining their raw bytes. This solution allows simple iden-
tity comparisons, which was sufficient for all useful case
studies we have explored so far.

Finally, our extensions had to resolve some keyword
conflicts between GDB and Python, such ascont and
break. For example, within commandscontinue refers to
the Python keyword whereascont to GDB’s keyword. In

the general case, we can prefix the keywordgdb in front
of GDB keywords within commands.

3.3 Limitations
We have usedFriday to debug large distributed applica-
tions. Though still a research prototype with rough edges
and only a rudimentary user interface, we have found
Friday to be a powerful and useful tool; however, it has
several limitations that potential users should consider.

We start with limitations that are inherent toFriday.
First, false positives can slow down application replay.
False positive rates depend on application structure and
dynamic behavior, which vary widely. In particular,
watching variables on the stack can slowFriday down
significantly. In practice we have circumvented this limi-
tation by recompiling the application with directives that
spread the stack across many independent pages of mem-
ory. Though this runs at odds with our goal of avoiding
recompilation, it is only required once per application, as
opposed to requiring recompilations every time a mon-
itored predicate or metric must change. Section 5 has
more details onFriday performance.

The secondFriday-specific limitation involves re-
playing from the middle of a replay trace. SomeFriday
predicates build up their debugging state by observing
the dynamic execution of a replayed application, and
when starting from a checkpoint these predicates must
rebuild that state through observation of a static snap-
shot of the application at that checkpoint. This pro-
cess is straightforward for the applications we study in
Section 4, but it may be more involved for applications
with more complex data structures. We are working on
a method for adding debugging state toliblog check-
points at debug time, to avoid this complexity.

Thirdly, although we have found thatFriday’s cen-
tralized and type-safe programming model makes pred-
icates considerably simpler than the distributed algo-
rithms they verify,Friday predicates often require some
debugging themselves. For example, Python’s dynamic
type system allows us to refer to application variables
that are not in dynamic scope, causing runtime errors.

BeyondFriday’s inherent limitations, the system in-
herits certain limitations from the components on which
it depends. First, an application may copy a watched
variable and modify the copy instead of the original,
which GDB is unable to track. This pattern is common,
for example, in the collection templates of the C++ Stan-
dard Template Library, and requires the user of GDB
(and consequentlyFriday) to understand the program
well enough to place watchpoints on all such copies.
The problem is exacerbated by the difficulty of access-
ing these copies, mostly due to GDB’s inability to place
breakpoints on STL’s many inlined accessor functions.

A second inherited limitation is unique to stack-based

5

variables. As with most common debuggers, we have
no solution for watching stack variables in functions that
have not yet been invoked. To illustrate, it is difficult
to set up ahead of time a watchpoint on the command
line argument variableargv of the main function across
all nodes before we have entered themain at all nodes.
Nested watchpoints are a useful tool in that regard.

Finally, Friday inherits liblog’s large storage re-
quirements for logs and an inability to log or replay
threads in parallel on multi-processor machines.

4 Case Studies
In this section, we present use cases for the new dis-
tributed debugging primitives presented above. First,
we look into the problem of consistent routing in the
i3/Chord DHT [24], which has occupied networking and
distributed research literature extensively. Then we turn
to debuggingTk, a reliable communication toolkit [26],
and demonstrate sanity checking of disjoint path compu-
tation over the distributed topology, an integral part of
many secure-routing protocols. For brevity, most exam-
ples shown omit error handling, which typically adds a
few more lines of Python script.

4.1 Routing Consistency
In this section, we describe a usage scenario in which
Friday helps a programmer to drill down on a reported
bug with i3/Chord. The symptom is the loss of a value
stored within a distributed hash table: a user who did
a put(key,value), doing aget(key) later did not receive
the value she put into the system before. We describe a
debugging session for this scenario and outline specific
uses ofFriday’s facilities.

Our programmer, Frieda, starts with a set of logs given
to her, and with the knowledge that two requests, aput

and aget that should be consistent with each other appear
to be inconsistent: theget returns something other than
what theput placed into the system.

4.1.1 Identifying a distributed bug

Frieda would probably eliminate non-distributed kinds of
bugs first, by establishing for instance that a node-local
store does not leak data. To do that, she can monitor that
the two requests are handled by the same node, and that
the node did not lose the key-value pair between the two
requests.

py getNode = None

py putNode = None

break process_data

command

if @(packet_id) == failing id:

if is get(@(packet_header)):

getNode = @(srv.node.id)

else:

putNode = @(srv.node.id)

end

This breakpoint triggers every time a request is for-
warded towards its final destination. Frieda will inter-
actively store the appropriate message identifier in the
Python variablefailing id and define the Python method
is get. At the end of this replay session, the variables
getNode andputNode have the identifiers of the nodes that
last serviced the two requests, and Frieda can read them
through theFriday command line. If they are the same,
then she would proceed to debug the sequence of opera-
tions executed at the common node between theput and
the get. However, for the purposes of our scenario we
assume that Frieda was surprised to find that theput and
theget were serviced by different nodes. This leads her
to believe that the system experiencedrouting inconsis-
tency, a common problem in distributed lookup services
where the same lookup posed by different clients at the
same time receives different responses.

4.1.2 Validating a Hypothesis
The natural next step for Frieda to take is to build a map
of the consistent hashing offered by the system: which
part of the identifier space does each node think it is re-
sponsible for? If the same parts of the identifier space are
claimed by different nodes, that might explain why the
same key was serviced by different nodes for theput and
the get requests. Typically, a node believes that its im-
mediate successor owns the range of the identifier space
between its own identifier and that of its successor.

The following breakpoint is set at the point that a node
sets its identifier (which does not change subsequently).
It uses theids associative array to mapFriday nodes to
Chord IDs.
py ids = {}
break chord.c:58

command

ids[__NODE__] = @((char*)id)

cont

end

Now Frieda can use this information to check the correct
delivery of requests for a given key as follows:
break process.c:69

command

if @(packet_id) != failing_id:

cont

for peer in __ALL__:

@((chordID)_liblog_workspace =

atoid("%(ids[peer])s"))

if @(is_between((chordID*)&_liblog_workspace,

@(packet_id), &successor->id)):

print "Request %s misdelivered to %s" %

(@(packet_id), @(successor->id))

break

cont

end

This breakpoint triggers whenever a node with ID
srv.node.id believes it is delivering a packet with desti-
nation IDpacket id to its rightful destination: the node’s

6

Node p state

Succ: n

Pred: ...

Node n state

Succ: s

Pred: p

Node s state

Succ: ...

Pred: p

Node

p

Node

n

Node

s

Figure 2:At the top, we show what noden believes the ring topology
to be around it. At the bottom, we see the relevant state as stored by the
involved nodesn, s andp. The thick routing entry from nodep to s

is inconsistent withn’s view of the ring, indicating a source of routing
consistency problems.

immediate successor with IDsrv.successor->id, such
that packet id is in between identifierssrv.node.id and
srv.successor->id. When that happens, this command
figures out if the request in question is one of Frieda’s
problem requests, and if so, it finds out if there is a node
that should be receiving the packet instead.

This check uses the native Chord functionatoid
to load the peer’s ID into application scratch space
(liblog workspace) and then invokes the Chord func-
tion is between to perform the range check. Both of
these functionalities could have been duplicated instead
in Python, if Frieda suspected their implementation as
the source of the problem.

This breakpoint command is a simple instance of a
very powerful construct: a global index of all nodes in
the system is very easy forFriday to construct at replay
time but difficult or impossible to collect reliably and ef-
ficiently at runtime. Doing so would require transmitting
each update (node insertion, etc.) to all nodes, presum-
ably while all other communication is disabled to avoid
inconsistencies. These updates would be expensive for
large networks and could fail due to transient network
conditions. Conversely,Friday can maintain a global
view of the whole logged population, even if the nodes
themselves could not talk to each other at runtime.

4.1.3 Searching for a Root Cause

The identified inconsistency told Frieda that she has a
problem. Most likely, it tells her that part of her pur-
ported ring topology looks like Figure 2, in which the
culprit node,p, believes its successor to be nodes and
delivers anything between identifiersp and s to s for
processing, where instead all requests for identifiers be-
tweenp andn belong to noden instead.

To dig deeper, Frieda can monitor ring consistency
more closely, for instance by ensuring that ring edges are
symmetric. Checking that successor/predecessor consis-
tency conditions hold at all times is unnecessary. Instead,
it is enough to check the conditions when a successor or
predecessor pointer changes, and only check those spe-

cific conditions in which the changed pointers partici-
pate. Frieda can encode this inFriday as follows:

watch srv.successor

command

successor_id = @(srv.successor->id)

if @(srv.node.id) !=

@nodes[successor_id](srv.predecessor->id):

print __NODE__, "’s successor link is asymmetric."

end

and symmetrically for the predecessor’s successor. This
would catch, for instance, the problem illustrated in Fig-
ure 2, which caused Frieda’s problem.

4.1.4 How Often Is The Bad Thing Happening?

Such inconsistencies occur transiently even when the
system operates perfectly while an update occurs, e.g.,
when a new node is inserted into the ring. Without trans-
actional semantics across all involved nodes in which
checks are performed only before or after a transition,
such warnings are unavoidable. Frieda must figure out
whether this inconsistency she uncovered occurs most of
the time or infrequently; that knowledge can help her de-
cide whether this is a behavior she should mask in her
Chord implementation (e.g., by sending redundantput

andget requests) or fix (e.g., by ensuring that nodes have
agreed on their topological neighborhood before acting
on topology changes).

In Friday, Frieda can compute the fraction of time
during which the ring topology lies in an inconsistent
state. Specifically, by augmenting the monitoring state-
ments from Section 4.1.3, she can instrument transitions
from consistent to inconsistent state and back, to keep
track of the time when those transitions occur, and aver-
aging over the whole system.

watch srv.successor, srv.predecessor

command

myID = @(srv.node.id)

successorID = @(srv.successor->id)

predecessorID = @(srv.predecessor->id)

if not (@nodes[successorID](srv.predecessor->id)

== @nodes[predecessorID](srv.successor->id)

== myID): #inconsistent?

if consistent[myID]:

consistentTimes +=

(@(__REALCLOCK__) - lastEventTime[myID])

consistent[myID] = False

lastEventTime[myID] = @(__REALCLOCK__)

else: # converse: consistent now

if not consistent[myID]:

inconsistentTimes +=

@((__REALCLOCK__) - lastEventTime[myID])

consistent[myID] = True

lastEventTime[myID] = @(__REALCLOCK__)

cont

end

py consistent = {}
py lastEventTime = {}
py consistentTimes = inconsistentTimes = 0

7

This example illustrates how to keep track of how much
time each replayed machine is in the consistent or incon-
sistent state, with regards to its ring links. The monitor-
ing specification keeps track of the amounts of time node
i is consistent or inconsistent in the debugging coun-
tersconsistentTimes andinconsistentTimes, respectively.
Also, it remembers when the last time a node switched
to consistency or inconsistency in the debugging hash ta-
blesconsistent andinconsistent, respectively. When the
distributed commands are triggered, if the node is now
inconsistent but was not before (the last time of turning
consistent is non-empty), the length of the just-ended pe-
riod of consistency is computed and added to the thus-far
sum of consistency periods. The case for inconsistency
periods is symmetric and computed in the “else” clause.

Periodically, or eventually, the relevant ratios can be
computed as the ratio of inconsistent interval sums over
the total time spent in the experiment, and the whole sys-
tem might be characterized taking an average or median
of those ratios.

4.1.5 State Oscillation

If Frieda finds that most of the time such inconsistencies
exist, she may decide this is indeed a bug and move to fix
it by ensuring a node blocks requests while it agrees on
link symmetry with its immediate neighbors.

In the unhappy case in which Frieda’s system is indeed
intended to have no such inconsistencies (i.e., she has
already written the code that causes nodes to agree on
link symmetry), she would like to determine what went
wrong. She can do by testing a series of hypotheses.

One such hypothesis—which is frequently the case
of inconsistencies in a broad range of distributed
applications—is a network link that, whether due to high
loss rates or intermittent hardware failure, makes a ma-
chine repeatedly disappear and reappear to its neigh-
bor across the link. This oscillation may cause routes
through the nodes to flap to backup links, or even create
routing wormholes and black holes. Frieda can analyze
the degree of oscillation in her network with the follow-
ing simpleFriday breakpoint commands.

break remove_finger

command

finger = @(f->node.addr) # f is formal parameter

events = routeEvents[@(srv.node.addr)]

if finger not in events:

events[finger] = []

events[finger].append(("DOWN",__LOGICALCLOCK__))

cont

end

break insert_finger

command

finger = @(addr) # addr is formal parameter

events = routeEvents[@(srv.node.addr)]

if finger in events:

lastEvent,time = events[finger][-1]

if lastEvent == "DOWN":

events[finger].append(("UP",__LOGICALCLOCK__))

cont

end

The first command adds a log entry to the debugging ta-
ble routeEvents (initialized elsewhere) each time a rout-
ing peer, orfinger, is discarded from the routing table.
The second command adds a complementary log entry if
the node is reinserted. The two commands are asymmet-
ric becauseinsert finger may be called redundantly for
existing fingers, and also because we wish to ignore the
initial insertion for each finger. The use of virtual clocks
here allows us to correlate log entries across neighbors.

4.2 A Reliable Communication Toolkit
In the second scenario, we investigateTk [26], a toolkit
that allows nodes in a distributed system to communi-
cate reliably in the presence ofk adversaries. The only
requirement for reliability is the existence of at leastk

disjoint paths between communicating nodes. To en-
sure this requirement is met, each node pieces together
a global graph of the distributed system based on path-
vector messages and then computes the number of dis-
joint paths from itself to every other node using the max-
flow algorithm. A bug in the disjoint path computation
or path-vector propagation that mistakenly registersk or
more disjoint paths would seriously undermine the secu-
rity of the protocol. Here we show how to detect such a
bug.

4.2.1 Maintaining a Connectivity Graph

When performing any global computation, including
disjoint-path computation, a graph of the distributed sys-
tem is a prerequisite. The predicate below constructs
such a graph by keeping track of the connection status
of each node’s neighbors.

py graph = zero_matrix(10, 10)

break server.cpp:355

command

neighbor_pointer = "(*(i->_M_node))"

neighbor_status_addr =

@(&(%(neighbor_pointer)s->status))

Set a watchpoint dynamically

watchpoint(["*%d" % neighbor_status_addr],

np=@(%(neighbor_pointer)s))

command

status = @((((Neighbor*)(%(np)d))->status))

neighbor_id = @((((Neighbor*)(%(np)d))->id))

my_id = @(server->id)

if status > 0:

graph[my_id][neighbor_id] = 1

compute_disjoint_paths() # Explained below.

cont

end

cont

end

8

This example showcases the use of nested watch-
points, which are necessary when a watchpoint must be
set at a specific program location. In this application,
a neighbor’s connection status variable is available only
when the neighbor’s object is in scope. Thus, we place
a breakpoint at a location where all neighbor objects
are enumerated, and as they are enumerated, we place
a watchpoint on each neighbor object’s connection sta-
tus variable. When a watchpoint fires, we set the corre-
sponding flag in an adjacency matrix.

A connection status watchpoint can be triggered from
many programs locations, making it hard to determine
what variables will be in scope for use within the watch-
point handler. In our example, we bind a watchpoint han-
dler’s np argument to the corresponding neighbor object
pointer, thereby allowing the handler to access the neigh-
bor object’s state even though a pointer to it may not be
in the application’s dynamic scope.

4.2.2 Computing Disjoint Paths

The following example checks the toolkit’s disjoint path
computation by running a centralized version of the dis-
joint path algorithm on the global graph created in the
previous example. The predicate records the time at
which thek-path requirement was met, if ever. This
timing information can then be used to detect disagree-
ment betweenFriday and the application or to deter-
mine node convergence time, among other things.

py time_Friday_found_k_paths = zero_matrix(10, 10)

def compute_disjoint_paths():

my_id = @(server->id)

k = @(server->k)

for sink in range(len(graph)):

Friday_num_disjoint_paths =

len(vertex_disjoint_paths(graph, my_id, sink))

if Friday_num_disjoint_paths >= k:

time_Friday_found_k_paths[my_id][sink] =

__VCLOCK__

The disjoint path algorithm we implemented in
vertex disjoint paths, not shown here, employs a
brute force approach—it examines allk combinations of
paths between source and destination nodes. A more ef-
ficient approach calls for using the max-flow algorithm,
but that’s precisely the kind of implementation com-
plexity we wish to avoid. Since predicates are run of-
fline, Friday affords us the luxury of using an easy-to-
implement, albeit slow, algorithm.

4.3 Discussion
As the preceding examples illustrate, the concept of an
invariant may be hard to define in a distributed system.
So-called invariants are violated even under correct op-
eration for short periods of time and/or within subsets of
the system.Friday’s embedded interpreter allows pro-

grammers to encode what it means for a particular sys-
tem to be “too inconsistent”.

By gaining experience with the patterns frequently
used by programmers to track global system properties
that are transiently violated, we intend to explore im-
proved high-level constructs for expressing such patterns
as part of our future work.

The Python code that programmers write in the pro-
cess of debugging programs withFriday can resemble
the extra, temporary code added inline to systems when
debugging with conventional tools: in cases where sim-
ple assertions or logging statements will not suffice, it
is common for programmers to insert complex system
checks which then trigger debugging code to investigate
further the source of the unexpected condition.

In this respect,Friday might be seen as a system for
“aspect-oriented debugging”, since it maintains a strict
separation between production code and diagnostic func-
tionality. The use of a scripting language rather than C
or C++ makes writing debugging code easier, and this
can be done after compilation of the program binaries.
However,Friday also offers facilities not feasible with
an on-line aspect-oriented approach, such as access to
global system state.

It has often been argued that debugging code should
never really be disabled is a production distributed sys-
tem. While we agree with this general sentiment, in
Friday we draw a more nuanced distinction between
code which is best executed all the time (such as con-
figurable logging and assertion checks), and that which
is only feasible or useful in the context of offline debug-
ging. The latter includes the global state checks pro-
vided byFriday, something which, if implemented in-
line, would require additional inter-node communication
and library support.

5 Performance
In this section, we evaluate the performance ofFriday,
by reporting its overhead on fundamental operations
(micro-benchmarks) and its impact on the replay of large
distributed applications. Specifically, we evaluate the ef-
fects of false positives, of debugging computations, and
of state manipulations in isolation, and then within re-
plays of a routing overlay.

For our experiments we gathered logs from a 62-node
i3/Chord overlay running on PlanetLab [3]. After the
overlay had reached steady state, we manually restarted
several nodes each minute for ten minutes, in order to
force interesting events for the Chord maintenance rou-
tines. No additional lookup traffic was applied to the
overlay. All measurements were taken from a 6 minute
stretch in the middle of this turbulent period. The logs
were replayed inFriday on a single workstation with
a Pentium D 2.8GHz dual-core x86 processor and 2GB

9

Benchmark Latency (ms)

False Positive 13.2

Null Command 15.6

Value Read 15.9

Value Write 15.9

Function Call 26.1

Safe Call 16.5

Table 1:Micro-benchmarks - single watchpoint

RAM, running the Fedora Core 4 OS with version 2.6.16
of the Linux kernel.

5.1 Micro-benchmarks

Here we evaluateFriday on six micro-benchmarks that
illustrate the overhead required to watch variables and
execute code on replayed process state. Table 1 contains
latency measurements for the following operations:
• False Positive: A watchpoint is triggered by the

modification of an unwatched variable that occupies
the same memory page as the watched variable.

• Null Command: The simplest command we can
execute once a watchpoint has passed control to
Friday. The overhead includes reading the new
value (8 bytes) of the watched variable and evalu-
ating a simple compiled Python object.

• Value Read: A single fetch of a variable from one of
the replayed processes. The overhead involves con-
tacting the appropriate GDB process and reading the
variable’s contents.

• Value Write: Updates a single variable in a single
replayed process.

• Function Call: The command calls an application
function that returns immediately. All watchpoints
(only one in this experiment) must be disabled be-
fore, and re-enabled after the function call.

• Safe Call: The command is marked “safe” to obviate
the extra watchpoint management.

These measurements indicate that the latency of han-
dling the segmentation faults dominates the cost of pro-
cessing a watchpoint. This means our implementation of
watchpoints is sensitive to the false positive rate, and we
could expect watchpoints that share memory pages with
popular variables to slow replay significantly.

Fortunately, the same data suggests that executing the
user commands attached to a watchpoint is inexpensive.
Reading or writing variables or calling a safe function
adds less than a millisecond of latency over a null com-
mand, which is only a few milliseconds slower than a
false positive. The safe function call is slightly slower
than simple variable access, presumably due to the extra
work by GDB to set up a temporary stack, marshal data,
and clean up afterward.

 0

 5

 10

 15

 20

 25

 30

safe
call

function
call

value
write

value
read

null
command

false
positive

La
te

nc
y

(m
s)

other
reprotect

check/execute
step

unprotect

Figure 3:Latency breakdown for various watchpoint events.

A normal “unsafe” function call, on the other hand, is
50% slower than a safe one. The difference (9.6 ms) is
attributed directly to the cost of temporarily disabling the
watchpoint before invoking the function.

We break down the processing latency into phases:
• Unprotect: Temporarily disable memory protection

on the watched variable’s page, so that the faulting
instruction can complete. This step requires calling
mprotect for the application, through GDB.

• Step: Re-execute the faulting instruction. This re-
quires a temporary breakpoint, used to return to the
instruction from the fault handler.

• Reprotect: Re-enable protection withmprotect.
• Check and Execute: If the faulting address falls in a

watched variable (as opposed to a false positive), its
new value is extracted from GDB. If the value has
changed, any attached command is evaluated by the
Python interpreter.

• Other: Miscellaneous tasks, including reading the
faulting address from the signal’s user context.

Figure 3 shows that a false positive costs the same as
a watchpoint hit. The dark segments in the middle of
each bar show the portion required to execute the user
command. It is small except the unsafe function call,
where it dominates.

5.2 Micro-benchmarks: Scaling of Com-
mands

Next we explored the scaling behavior of the four com-
mand micro-benchmarks:value read, value write, func-
tion call, andsafe call. Figure 4 shows the cost of pro-
cessing a watchpoint as the command accesses an in-
creasing number of nodes. Each data point is averaged
over the same number of watchpoints; the latency in-
creases because more GDB instances must be contacted.

The figure includes the best-fit slope for each curve,
which approximates the overhead added for each addi-
tional node that the command reads, writes, or calls. For
most of the curves this amount closely matches the dif-
ference between a null command and the correspond-

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 25 50 75 100

La
te

nc
y

(m
s)

% Processes Accessed

0.38 ms/node0.41 ms/node

0.
56

 m
s/

no
de

Read
Write

Safe Call

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 25 50 75 100

% Processes Accessed

12
.8

4
m

s/
no

de

Function Call

Figure 4: Micro-benchmarks indicating latency and first standard
deviation (y axis), as a function of the percentage of nodes involved in
the operation (x axis). The population contains 62 nodes.

ing single-node reference. In contrast, the unsafe func-
tion call benchmark increases at a faster rate—almost
double—and with higher variance than predicted by the
single node overhead. We attribute both phenomena to
greater contention in the replay host’s memory hierarchy
due to the extra memory protection operations.

5.3 Micro-benchmarks on Chord
We continue by evaluating how the same primitive op-
erations described in the previous section affect a base-
line replay of a distributed application. For each bench-
mark, we average across 6 consecutive minute-long pe-
riods from the i3/Chord overlay logs described above.
Other applications would experience more or less over-
head, depending on the relative frequency oflibc calls
and watchpoint triggers.

We establish a replay baseline by replaying all 62
traced nodes inliblog without additional debugging
tasks. Average replay slowdown is3.12x, with a stan-
dard deviation of.08x over the 6 samples. liblog

achieves a slowdown less than the expected62x by skip-
ping idle periods in each process. For comparison, sim-
ply replaying the logs in GDB, but withoutliblog, ran
11 times faster, for a replayspeedupof 3.5x. The dif-
ference between GDB andliblog is due to the schedul-
ing overhead required to keep the 62 processes replaying
consistently.liblog must continually stop the running
process, check its progress, and swap in a new process to
keep their virtual clocks synchronized. Withoutliblog,
we let GDB replay each log fully before moving on.

To measure false positives, we add a dummy watch-
point on a variable at a memory page written about4.7

times per second per replayed node; the total average
replay slowdown goes up to7.95x (0.2x standard de-
viation), or 2.55x slower than baseline replay. This is
greater than what our micro-benchmarks predict:4.7

triggered watchpoints per second should expand every
replayed second from the baseline3.12 seconds by an
additional4.7× 62× 0.0132 = 3.87 seconds for a slow-

Benchmark Slowdown (dev) Relative

No Watchpoints 3.12 (.08) 1

False Positives Only 7.95 (0.22) 2.55

Null Command 8.24 (0.24) 2.64

Value Read 8.25 (0.17) 2.65

Value Write 8.26 (0.21) 2.65

Function Call 9.01 (0.27) 2.89

Safe Call 8.45 (0.26) 2.71

Table 2: Micro-benchmarks: slowdown of Chord replay for watch-
points with different commands.

down of4.87x. We conjecture that the extra slowdown
is due to cache contention on the replay machine, though
further testing will be required to validate this.

To measureFriday’s slowdown for the various types
of watchpoint commands, we set a watchpoint on a vari-
able that is modified once a second on each node. This
watchpoint falls on the same memory page as in the pre-
vious experiment, so we now see one watchpoint hit and
3.7 false positives per second. The slowdown for each
type of command is listed in Table 2.

The same basic trends from the micro-benchmarks ap-
pear here: function calls are more expensive than other
commands, which are only slightly slower than null com-
mands. Significantly, the relative cost of the commands
is dwarfed by the cost of handling false positives. This is
expected, because the latency of processing a false pos-
itive is almost as large as a watchpoint hit, and because
the number of false positives is much greater than the
number of hits for this experiment. We examine differ-
ent workloads later, in Section 5.4.

Next, we scale the number of replayed nodes on whose
state we place watchpoints, to verify that replay perfor-
mance scales with the number of watchpoints. These ex-
periments complement the earlier set which verified the
scalability of the commands.

As expected, as the number of memory pages incur-
ring false positives grows, replay slows down. Fig-
ure 5(a) shows that the rate at which watchpoints are
crossed—both hits and false positives—increases as
more processes enable watchpoints. The correlation is
not perfect, because some nodes were more active and
executed the watched inner loop more often than others.

Figure 5(b) plots the relative slowdown caused by the
different types of commands as the watchpoint rate in-
creases. These lines suggest thatFriday does indeed
scale with the number of watchpoints enabled and false
positives triggered.

5.4 Case Studies
Finally, we return to the case studies from Section 4. Un-
like the micro-benchmarks, these case studies include re-
alistic and useful commands. They exhibit a range of
performance, and two of them employ distributed break-

11

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 25 50 75 100

W
at

ch
po

in
t C

ro
ss

in
gs

 /
se

c

% Watchpoints Enabled

(a)

all
FPs
hits

 1

 1.5

 2

 2.5

 3

 0 25 50 75 100
R

ep
la

y
S

lo
w

do
w

n
(v

s.
 B

as
ic

)
% Watchpoints Enabled

(b)

Call
Safe call

Write
Read
Noop

All FPs

Figure 5:(a) Number of watchpoints crossed vs. percentage of nodes
with watchpoints enabled (i3/Chord logs). Approximately linear. (b)
Replay slowdown vs. percentage of nodes with watchpoints enabled,
relative to baseline replay (i3/Chord logs).

Predicate Slowdown

None 1.00

Ring Consistency Stat. 2.53

w/Software Watchpoints 8470.0

State Oscillation 1.48

Misdelivered Packets 9.05

Table 3: Normalized replay slowdown under three different case
studies. The last row gives the slowdown for the Ring Consistency
Statistics predicate when implemented in GDB with single-stepping.

points instead of watchpoints.
We replayed the same logs used in earlier experi-

ments with the predicates for Misdelivered Packets (Sec-
tion 4.1.2), Ring Consistency Statistics (Section 4.1.4),
and State Oscillation (Section 4.1.5). Figure 6 plots the
relative replay speed against the percentage of nodes on
which the predicates are enabled. Table 3 summarizes
the results. Results with the case studies from Section 4.2
were comparable, giving a 100%-coverage slowdown of
about 14 with a population of 10 nodes.

Looking at the table first, we see that the three case
studies range from1.5 to 9 times slower than base-
line replay. For comparison, we modifiedFriday to
use software watchpoints in GDB instead of our mem-
ory protection-based system, and reran the Ring Consis-
tency Statistics predicate. As the table shows, that ex-
periment took over 8000 times longer than basic replay,
or about 3000 times slower thanFriday’s watchpoints.
GDB’s software watchpoints are implemented by single-
stepping through the execution, which consumes thou-
sands of instructions per step. The individual memory
protection operations used byFriday are even more ex-
pensive but their cost can be amortized across thousands
of non-faulting instructions.

Turning to Figure 6, the performance of the Ring
Consistency Statistics predicate closely matches that of
the micro-benchmarks in the previous section (cf., Fig-
ure 5(b)). This fact is not surprising: performance here is

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 25 50 75 100

R
ep

la
y

S
lo

w
do

w
n

(v
s.

 B
as

ic
)

% Watchpoints Enabled

(a)

consistency
oscillation

misdelivery

 0

 1

 2

 3

 4

 5

 6

 0 25 50 75 100

O
cc

ur
re

nc
es

 /
se

co
nd

% Watchpoints Enabled

(b)

cons. hits x 100
cons. FPs

oscillation brk
misdelivery brk

Figure 6: (a) Replay slowdown statistics for case study predicate
performance vs. percentage of nodes with watchpoints enabled. (b)
Watchpoint, breakpoint, and false positive rates vs. percentage of nodes
with watchpoints/breakpoints enabled.

dominated by the false positive rate, because these pred-
icates perform little computation when triggered. Fur-
thermore, both sets of predicates watch variables located
on the same page of memory, due to the internal struc-
ture of the i3/Chord application, so their false positive
rates are the same.

The figure shows that the State Oscillation predicate
encounters more breakpoints than the Ring Consistency
predicate does watchpoints. However, handling a break-
point is almost free, and the commands are similar in
complexity, soFriday runs much faster for State Oscil-
lation predicates.

The Misdelivered Packets case study hit even fewer
breakpoints, and ran the fewest number of commands.
Those commands were very resource-intensive, however,
requiring dozens of (safe) function calls each time. Over-
all performance, as shown in Figure 6(a), is the slowest
of the three predicates.

6 Related Work
Friday utilizes library interposition to obtain a re-
playable deterministic trace of distributed executions.
The WiDS Checker [17] has many similar characteris-
tics with some notable differences: whereasFriday op-
erates on unmodified applications and checks predicates
at single-machine-instruction granularity, the WiDS
Checker is applicable only to applications developed
with the WiDS toolkit and checks predicates at event-
handler granularity. Similarly toFriday, Jockey [20]
and Flashback [23] use system call interposition, binary
rewriting, and operating system modifications to cap-
ture deterministic replayable traces, but only for a single
node. DejaVu [15] targets distributed Java applications,
but lacks the state manipulation facilities ofFriday.

Further afield, much research has gone into replay de-
bugging via virtualization, which can capture system ef-
fects below the system library level, first articulated by
Harris [9]. Several projects have pursued that agenda

12

since [11, 13, 23], albeit only for single-thread, single-
process, or single-machine applications. Furthermore,
symbolic debugging in such systems faces greater chal-
lenges than withFriday, since the “semantic gap” be-
tween application-defined symbols and the virtual ma-
chine interface must be bridged at some computational
and complexity cost.

Moving away from replay debugging, many systems
focus on extracting execution logs and then mining those
logs for debugging purposes [1, 2, 5, 6, 10, 22]. Such
systems face the challenge of reconstructing meaningful
data- and control-flow from low-level logged monitoring
information. Friday circumvents this challenge, since
it can fully inspect the internal state of the nodes in the
system during a replay of the traced execution and, as
a result, need not guess at connections across layers (as
with black-box approaches) or recompile the system (as
with annotation-based systems).

Notable logging-based work in closer alignment with
Friday comes from the Bi-directional, Distributed
BackTracker (BDB) [14], XTrace [7], and Pip [19]. BDB
and XTrace track and report causality among events
within a distributed system, e.g., to trace identified back-
door programs backwards to their onset or, in the case
of XTrace, to identify problems along cross-layer paths.
Pip [19] works by comparing actual behavior and ex-
pected behavior to expose bugs. Such behaviors are
defined as orderings of logged operations at participat-
ing threads and limits on the values of annotated and
logged performance metrics. In both cases, the kinds of
checks performed can be readily encoded inFriday, ex-
cept for those dependent on kernel-level sensors, which
lie beyond our library tracing granularity. However, the
replay-based nature ofFriday allows programmers to
refine checks after repeated replays without the need for
recompilation and fresh log extraction, as would be the
case for disambiguating noisy tasks (e.g., directory list-
ing filesystem operations in BDB) or for creating new
sensors (e.g., heap size monitors when none were ini-
tially thought necessary in Pip).

At a more abstract level, model checking has been re-
cently proposed as a tool for debugging distributed sys-
tems. Most notably, MaceMC [12] is a heuristic model
checker for finding liveness violations in distributed ap-
plications built using the Mace language. As with model
checking in general, MaceMC can exercise a distributed
application over many more possible executions than any
replay debugging system, includeFriday, can. However
replay systems, such asFriday, tend to capture more re-
alistic problems than model checkers such as complex
network failures and hardware malfunctions, and can
typically operate on much longer actual executions than
the combinatorial nature of model checking can permit.

A growing body of work is starting to look at on-line

debugging [27], in contrast to the off-line nature of de-
buggers described above. The P2 debugger [21] operates
on the P2 [18] system for the high-level specification and
implementation of distributed systems. LikeFriday,
this debugger allows programmers to express distributed
invariants in the same terms as the running system, al-
beit at a much higher-level of abstraction thanFriday’s
libc-level granularity. UnlikeFriday, P2 targets on-line
invariant checking, not replay execution. As a result,
though the P2 debugger can operate in a completely dis-
tributed fashion and without need for log back-hauling,
it can primarily check invariants that have efficient on-
line, distributed implementations.Friday, however, can
check expensive invariants such as the existence of dis-
joint paths, since it has the luxury of operating outside
the normal execution of the system.

More broadly, many distributed monitoring systems
can perform debugging functions, typically with a sta-
tistical bend [4,28,30]. Such systems employ distributed
data organization and indexing to perform efficient dis-
tributed queries on the running system state, but do not
capture control path information equivalent to that cap-
tured byFriday.

7 Conclusion and Future Work
Friday is a replay-based symbolic debugger for dis-
tributed applications that enables the developer to main-
tain global, comprehensive views of the system state.
It extends the GDB debugger andliblog replay li-
brary with distributed watchpoints, distributed break-
points, and actions on distributed state.Friday provides
programmers with sophisticated facilities for checking
global invariants—such as routing consistency—on dis-
tributed executions. We have described the design, im-
plementation, usage cases, and performance evaluation
for Friday, showing it to be powerful and efficient for
distributed debugging tasks that were, thus far, under-
served by commercial or research debugging tools.

The road ahead is ripe for further innovation in dis-
tributed debugging. One direction of future work re-
volves around reducing watchpoint overheads via the
reimplementation of the malloc library call and mem-
ory page fragmentation, or through intermediate binary
representations, such as those provided by the Valgrind
tool. Building a hybrid system that leverages the limited
hardware watchpoints, yet gracefully degrades to slower
methods, would also be rewarding.

Another high-priority feature is the ability to check-
point Friday state during replay. This would allow a
programmer to replay inFriday a traced session with
its predicates from its beginning, constructing any de-
bugging state along the way, but only restarting further
debugging runs from intermediate checkpoints, without
the need for reconstruction of debugging state.

13

We are considering better support for thread-level par-
allelism inFriday andliblog. Currently threads exe-
cute serially with a cooperative threading model, to order
operations on shared memory. We have also designed a
mechanism that supports preemptive scheduling in user-
land, and we are also exploring techniques for allowing
full parallelism in controlled situations.

We plan to expand our proof-of-concept cluster-replay
mechanism to make more efficient use of the cluster’s
resources. Our replay method was designed to ensure
that each replay process is effectively independent and
requires little external communication. Beyond cluster-
parallelism, we are developing a version ofliblog that
allows replay in-situ on PlanetLab. This technique in-
creases the cost of centralized scheduling but avoids the
transfer of potentially large checkpoints and logs.

Further down the road, we want to improve the ability
of the system operator to reason about time. Perhaps our
virtual clocks could be optimized to track “real” orav-
eragetime more closely when the distributed clocks are
poorly synchronized. Better yet, it could be helpful to
make stronger statements in the face of concurrency and
race conditions. For example, couldFriday guarantee
that an invariantalwaysheld for an execution, given all
possible interleavings of concurrent events?

Growing in scope,Friday motivates a renewed look
at on-line distributed debugging as well. Our prior expe-
rience with P2 debugging [21] indicates that a higher-
level specification of invariants, e.g., at “pseudo-code
level,” might be beneficially combined with system
library-level implementation of those invariants, as ex-
emplified byFriday, for high expressibility yet deep un-
derstanding of the low-level execution state of a system.

Acknowledgments: We are indebted to Sriram
Sankararaman for allowing us the use of his Tk imple-
mentation, to the anonymous reviewers for their astute
feedback, and to Mike Dahlin for his shepherding efforts.
This research was sponsored by NSF under grant number
ANI-0133811, by the State of California under MICRO
grants #05-060 and #06-150, and by a Fannie and John
Hertz Foundation Graduate Fellowship.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance Debugging for Distributed Sys-
tems of Black Boxes. InSOSP, 2003.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie
for Request Extraction and Workload Modelling. InOSDI, 2004.

[3] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Op-
erating system support for planetary-scale network services. In
NSDI, 2004.

[4] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: support-
ing scalable multi-attribute range queries. InSIGCOMM, 2004.

[5] A. Chanda, K. Elmeleegy, A. Cox, and W. Zwaenepoel. Cause-
way: System Support for Controlling and Analyzing the Execu-
tion of Distributed Programs. InHotOS, 2005.

[6] M. Y. Chen, A. Accardi, E. Kıcıman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-based Failure and Evolution Man-
agement. InNSDI, 2004.

[7] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica.XTrace:
A Pervasive Network Tracing Framework. InNSDI, 2007.

[8] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay Debug-
ging for Distributed Applications. InUSENIX Annual Technical
Conference, 2006.

[9] T. L. Harris. Dependable Software Needs Pervasive Debugging
(Extended Abstract). InSIGOPS EW, 2002.

[10] J. Hollingsworth and B. Miller. Dynamic Control of Performance
Monitoring of Large Scale Parallel Systems. InSuper Computing,
1993.

[11] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting
Past and Present Intrusions through VulnerabilitySpecificPredi-
cates. InSOSP, 2005.

[12] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, Death,
and the Critical Transition: Finding Liveness Bugs in Systems
Code. InNSDI, 2007.

[13] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. InUSENIX Annual
Technical Conference, 2005.

[14] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen. En-
riching intrusion alerts through multi-host causality. InNDSS,
2005.

[15] R. Konuru, H. Srinivasan, and J.-D. Choi. Deterministicreplay
of distributed java applications. InIPDPS, 2000.

[16] L. Lamport. Time, Clocks, and the Ordering of Events in a Dis-
tributed System.Communications of the ACM, 21(7):558–565,
1978.

[17] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS Checker: Combating
Bugs in Distributed Systems. InNSDI, 2007.

[18] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica. Implementing Declarative Overlays. InSOSP,
2005.

[19] P. Reynolds, J. L. Wiener, J. C. Mogul, M. A. Shah, C. Killian,
and A. Vahdat. Pip: Detecting the Unexpected in Distributed
Systems. InNSDI, 2006.

[20] Y. Saito. Jockey: A user-space library for record-replay debug-
ging. InInternational Symposium on Automated Analysis-Driven
Debugging, 2005.

[21] A. Singh, P. Maniatis, T. Roscoe, and P. Drushel. Using Queries
for Distributed Monitoring and Forensics. InEuroSys, 2006.

[22] R. Snodgrass. A Relations Approach to Monitoring Complex
Systems. IEEE Transactions on Computer Systems, 6(2):157–
196, 1988.

[23] S. M. Srinivashan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and determinis-
tic replay for software debugging. InUSENIX Annual Technical
Conference, 2004.

[24] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Inter-
net indirection infrastructure. InSIGCOMM, 2002.

[25] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A Scal-
able Peer-to-peer Lookup Protocol for Internet Applications.
IEEE/ACM Transactions of Networking, 11(1):17–32, 2003.

[26] L. Subramanian.Decentralized Security Mechanisms for Routing
Protocols. PhD thesis, University of California at Berkeley, 2005.

[27] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Automatic
On-line Failure Diagnosis at the End-User Site. InHotDep, 2006.

[28] R. van Renesse, K. P. Birman, D. Dumitriu, and W. Vogel. Scal-
able management and data mining using Astrolabe. InIPTPS,
2002.

[29] R. Wahbe. Efficient data breakpoints. InASPLOS, 1992.
[30] P. Yalagandula and M. Dahlin. A Scalable Distributed Informa-

tion Management System. InSIGCOMM, 2004.

14

