A Survey of Formal Verification Approaches
for Practical Systems

Qiao Zhang, Danyang Zhuo, James Wilcox
University of Washington

1 Introduction

The development of any large scale software systems of-
ten involves the discovery and elimination of an enormous
amount of bugs. Linux kernel bug tracker currently tracks
2830 known bugs as of April 2015, with many bugs that
are likely still unknown [3]. A bug in Google LevelDB
prevents users from storing block chains and participating
in the Bitcoin network [1]. The absence of checksum in
an internal state caused Amazon S3 to become unavail-
able for hours in 2008 [2]. To ensure the reliability of
systems, best practices in industry often rely on frequent
peer code reviews, extensive test suites and occasionally
static and dynamic analysis. However, despite significant
effort spent in eliminating programming errors, practical
systems deployed today still suffer from frequent errors,
sometimes leading to catastrophic consequences [2].

Formal verification is the only known way to ensure
that a system is completely free of bugs and that the sys-
tem is behaving correctly according to a set of high-level
specifications. However, to formulate a precise program
specification and to provide a formal proof that an imple-
mentation meets the specification is often a significant
undertaking. The conventional wisdom in the systems
community is that the costs of producing a formal proof
far outweigh its benefits.

The reality is that the technology in program verifica-
tion is becoming mature enough that many recent projects
have formally verified systems of scale, hitherto thought
to be impractical. The variety of existing approaches,
however, are diverse in their goals, tools and end-to-end
guarantees.

We provide a systematic survey of existing formal ver-
ification approaches while critically examining each ap-
proach to answer our key question: how can practical
systems programming effectively use formal verification
to ensure reliability?

Specifically, we give a taxonomy of existing formal
verification approaches, classifying each based on the
following aspects:

1. What system components are verified?
2. What are the verification goals?

3. What verification tools are used?

4. How much proof effort is required?

5. What is the Trust Computing Base (TCB) of the
verified system?

Based on our survey, we identify a few challenges with
existing formal verification approach for practical systems
building. Moreover, we identify some system components
that would be interesting to formally verify that have not
yet been attempted and set down the challenges that we
would face using the state of the art approaches.

2 Formally Verified Systems

This section overviews a few projects that use formal
verification to build reliable systems, ranging from OS
components, to full OS kernels, to distributed systems.

2.1 Operating Systems
2.1.1 Jitk

Modern operating systems run multiple interpreters in the
kernel, which enable user-space applications to add new
functionalities or specialize system policies. It is very
challenging to ensure that both the in-kernel interpreter
and the user-supplied code are bug-free. In fact, existing
in-kernel interpreters suffer from a wide range of bugs
such as jump target off by one, incorrect division-by-zero
check, buffer overflow and incorrect translation of high-
level policies to low-level bytecode.

Jitk is a new infrastructure for building verified in-
kernel interpreters that guarantee functional correctness
through high-level policy language to native code as well
as guarantee safety in executing native code in-kernel [8].
Jitk translates policy rules to BPF instructions that are
transmitted across the user-kernel boundary in bytecode
format. Jitk decodes the BPF bytecode and translates the
BPF instructions to Cminor. CompCert compiles Cminor
instructions to native assembly, which gets translated to
native binary code using a conventional assembler. Jitk
uses Coq to prove the semantic preservation from policy
language to BPF language, the correctness of BPF en-
coder/decoder, and the semantic preservation from BPF
language to Cminor. Jitk trusts that CompCert correctly
compiles Cminor to assembly and that a conventional as-
sembler correctly translates the assembly to binary code.

System Type Proof Goals Proof Tools Proof Effort Implementation TCB
Jitk in-kernel inter- | implementation func- | Coq, CompCert 2300 lines of Coq | JIT code extracted | Coq, CompCert, Assembler,
preter tional correctness and proof from Coq to | OCaml compiler/runtime
safety OCaml
ExpressOS mobile OS security invariants for | code contracts, | 2.8% annotation | C# and Dafny hardware, L4 microkernel,
mobile apps Dafny ratio C# and Dafny compil-
ers/runtime
Verve OS kernel Memory- and Type- | Boogie, safe C#, | 2-3x annotation | C# and Boogie | Compilers, the linker
safety and TAL ratio compilers
selL.4 OS microkernel functional correctness | Isabelle/HOL, 33k Isabelle LOC, | high performance | spec, GCC, assembler, hard-
Haskell 14k Haskell/C | C ware
LOC, 20 py
VCC 20% of Hyper-V | functional correctness | Boogie, Spec# 13K lines of anno- | C Boogie, translation from C to
tation Boogie
Ironclad Apps remote services Secure remote equiva- | Dafny, = Boogie | implementation to | Dafny compiledto | spec, hardware, Verve, assem-
lences and Z3 spec ratio is 2x, | assembly bler, linker
proof annotation
is 4.8x
Quark Browser kernel security properties Coq, Ynot 8KLOC Extract to Ocaml | Coq, OCaml, sandbox
Reflex Reactive systems | temporal logic asser- | Coq, Ynot, cus-| 13KLOC (no man- | DSL compiler Coq, DSL frontend, Ynot
tions tom automation ual proofs for sys-
tems!)
Verdi distributed sys- | safety properties Coq 30KLOC Extracted to | Coq, OCaml, shim, fault
tems OCaml, linked | model
with shim
Compcert C compiler semantic equivalence | Coq 150KLOC Extracted to | Coq, OCaml, reader, printer
OCaml
Bedrock low-level code functional correctness | Coq (embedded | 36KLOC x86 x86 semantics

DSL)

Table 1: Taxonomy of Formally Verified Systems

Safety properties such as termination and absence of ker-
nel stack overflow are proven using Coq too. At a cost of
2300 lines of Coq and a total of 3510 lines of code for the
Jitk/BPF prototype, Jitk is shown to prevent commonly
known bugs in in-kernel interpreters.

2.1.2 ExpressOS

ExpressOS is a new OS architecture that provides for-
mally verified security invariants to mobile applica-
tions [7]. In contrast to prior OS verification effort that
aimed at full functional correctness, ExpressOS only fo-
cuses on guaranteeing security invariants covering secure
storage, memory isolation, user interface isolation and
secure IPC. In order to further simplify verification effort,
ExpressOS reduces the amount of code in the kernel by
pushing functionality into microkernel services as well
as leveraging programming language type safety to iso-
late control and data flows within the kernel. ExpressOS
kernel is implemented in type-safe C# and Dafny. To guar-
antee the security invariants, the implementation makes
extensive use of code contracts and Dafny annotations, e.g.
pre- and postconditions and object invariants. Complex
specifications that are not always expressible in terms of
pre- and post condition assertions on local-scope program
state necessitate the use of ghost variables to aid verifi-
cation. While code contracts are verified using abstract
interpretation techniques and require low annotation over-
head, they cannot reason about complex properties and
therefore are used for verifying simpler security invariants.
The more expressive Dafny annotations which use SMT
solver and require heavy annotation burden and deep ex-
pertise in formal methods are used to reason about more
complex properties. The combination of code contracts
and Dafny annotations allow high productivity and a low
annotation/code ratio of 2.8%.

ExpressOS trusts the hardware, the L4 microkernel that
interfaces the hardware, the compilers and the language
runtime. All system services are however not part of the
TCB since the security invariants for the applications are
still maintained even if the system services are compro-
mised.

2.1.3 Verve

Verve is an operating system that is verified to have type
safety and memory safety [10]. The aim is to substantially
reduce the human effort of proving operating system. The
traditional OS is separated into a Nucleus and a kernel.
The Nucleus consists of all the abstractions of the un-
derlying hardware and memory. It is written completely
in assembly language. Each function is annotated with
preconditions, postconditions and loop invariants. The
correctness is verified by Boogie. Boogie is a Hoare style
program verifier. The kernel implements all the fully-
fledged OS services. It is written in safe C# and compiled

to Typed assembly language(TAL) which is then checked
with existing TAL checker.

Verve does not trust high level language compiler or
any unverified library code. It only has to trusts Boogie,
TAL checker, the assembler and the linker. In contrast to
a script-to-code ratio of 20 of sel4, Verve only requires
2-3 annotations per executable statement.

2.1.4 sel4

seL4 [6] is a fully verified L4 microkernel. Its C im-
plementation is verified to satisfy the specification. The
abstract specification of what the kernel does is precisely
modeled in Isabelle/HOL, for example, argument formats,
encodings and C integer type width. A Haskell prototype
of the kernel (also called an executable specification) is
implemented based on the abstract specification to de-
termine the low level details on data structures and algo-
rithms. Finally, a high performance C implementation is
manually translated from the Haskell prototype.

The functional correctness of the kernel is proved by
refinement in two stages. The proof demonstrates first
correspondence between the abstract specification and the
executable specification and then correspondence between
the executable specification and the C implementation.
Since correspondence is transitive, the proof shows that
the C implementation satisfies the abstract specification
precisely.

sel4 is the first-ever fully verified general-purpose ker-
nel and the verified implementation is in C. The proof
took 33k Isabelle/HOL LOC, 14k Haskell/C LOC and a
total of 20 person-year.

2.1.5 vcC

The goal of VCC is to develop a set of tools that can verify
commercial system software and then use those tools to
verify functional correctness of Microsoft Hyper-V [4].
Hyper-V is an existing commercial hypervisor written in
C and it was built without any formal verification in mind.

VCC requires developers to annotate C functions with
pre- and post-conditions, assertions and other invariants.
VCC does static analysis to generate a corresponding
Boogie program and Boogie leverages Z3 to check if
each assertion in the functions can be soundly proved.
Tools, like VCC model viewer, translate counterexamples
in Z3 back to a program state sequence that violates the
assertions.

VCC successfully proves 20% of the Hyper-V code
base with 13500 lines of annotation.

2.2 Reactive and Distributed Systems
2.2.1 [Ironclad Apps
Ironclad apps [5] are a set of secure services, for exam-

ple, notary or differential-privacy database service, that
provide remote clients with the guarantee that the remote

code executed verifiably conform with the app’s high
level abstract state machine and that the app verifiably
uses secure hardware. Ironclad apps verify the end-to-end
security property of the full software stack, including not
only the app, but also the OS, libraries and drivers. More-
over, the proofs cover the assembly code compiled from
high level Dafny language, so Ironclad does not include
the compiler or language runtime as part of its TCB.

Ironclad achieves rapid development by using state-
of-the-art automated software verification tools such as
Dafny, Boogie and Z3. Ironclad uses a set of techniques
such as incremental verification, opaque function and
also adopts software engineering disciplines such as id-
iomatic specification to allow scalable and stable verifica-
tion through automated tools.

Ironclad has 2:1 implementation to spec ratio and 4.8:1
proof annotation to implementation ratio. The four Iron-
clad apps consist of 3,546 lines of spec and 7K lines of
implementation in total. Ironclad took about 3 person-
years to verify.

2.2.2 Verdi

Verdi is a framework for formally verifying distributed
system implementations [9]. Because distributed systems
run in a diverse range of environments, Verdi supports ver-
ifying systems in various fault models. Verdi serparates
verifying application logic from fault tolerance mecha-
nisms using verified system transformers. Verdi contains
system transforms which handle several types of common
faults with proofs that they preserve application logic in
the new network semantics.

2.2.3 Quark

Quark is a verified browser kernel that enforces security
properties such as tab noninterference. The key insight of
Quark is that these properties can be enforced by writing
and verifying a relatively small amount of code (on the
order of 1000 lines). The remaining code is run in a
sandbox that is controlled by the kernel.

2.2.4 Reflex

Reflex generalizes the techniques of Quark to arbitrary
reactive systems. Reflex includes custom automation
tactics to prove temporal logic assertions about systems
expressed in the Reflex DSL. By specializing the type of
system allowed and restricting the properties that can be
expressed, Reflex enables the construction of a verified
SSH server, browser kernel, and web server.

2.3 Compilers
2.3.1 Compcert

Compcert is a verified C compiler. Compcert includes
formal semantics for C, three backends (x86, ARM, and
PowerPC), and over 10 intermediate languages used as

part of the compilation process. The externally visible
behavior of a program is defined to be the sequence of
system calls that a program makes. Compcert is verified
to preserve this behavior. That is, the resulting assembly
program is guaranteed to make the same system calls
in the same order with the same argument. It is thus
indistinguishable from the input program.

232 VST

Verified Software Toolchain (VST) verifies the asser-
tions claimed at the top of the toolchain still hold in the
machine-language program. VST consists of three parts:
A static analyzer that checks the assertions in the source-
language program, a proved compiler that transform the
source-language program to machine-language program
and a runtime to support external function calls from the
machine-language program.

VST specify observable behaviors of source- and target-
language programs and proves the corresponding target-
language exhibit the same observable behavior as the
source-language. The benefit of this approach is that
the checker does not need to reason about the internal
behaviors on the concurrent states. VST chooses C minor
as the source language. TCB of VST is the transition
from source-language to target-language and Coq.

2.3.3 Bedrock

Bedrock is a framework for writing and verifying low
level code in Coq. Bedrock includes custom automation
for proving separation logic formulas over x86 programs.
Bedrock has been used to verify a multithreaded web-
server implementation.

3 Challenges

Recent verification projects aim to verify the implemen-
tations rather than just the high level specifications of
systems, e.g. VCC and seL4. However, none of those
projects successfully verified an existing system. Mi-
crosoft HyperV is a hypervisor written without formal
verification in mind. VCC only manages to verify 20%
of the implementation, rather than the full system. Most
other projects start from scratch and write a full system
that are more amenable to verification. Verdi and Jitk
allows an implementation to be extracted in a high level
language such as OCaml or Haskell. However, for per-
formance critical systems, the eventual implementation
in OCaml is unlikely to be deployable which defeats the
purpose of verifying the implementation rather than just
the specifications. seL4 is a notable exception to this, but
it requires manual translation from a Haskell prototype
to C and require two refinement proofs due to the dual
implementation. The proof effort was enormous, so it is
unclear if the approach of dual implementation is optimal.

Some projects make extensive use of automated theo-
rem prover such as Dafny in their verification, e.g. Iron-
clad, ExpressOS. Such tools make the verification pro-
cess less manual, but at the expense of an increased TCB.
Moreover, Hoare proof style is not applicable to all sys-
tems. The alternative approach is to use Coq which has
an extremely small TCB. The drawback is that proving
theorems in Coq require an extensive and intricate knowl-
edge of proof tactics. While having a suite of tactics as a
library alleviate the problem, proving systems in Coq is
still difficult.

4 Research Problems

4.1 Verified Bitcoin Scripting Engine

Recently, Bitcoin emerges as the most important cryp-
tographic currency. Bitcoin uses a Forth-like scripting
language to enable flexible financial transactions. Bugs in
Bitcoin scripting engine can result in substantial monetary
loss to participating parties. The scripting engine is imple-
mented in C as an open source project on GitHub. Similar
to Jitk, we can implement a Bitcoin scripting engine in
Coq and extract an OCaml/Haskell implementation with
functional correctness properties verified.

4.2 An Incrementally Verifiable System

Using an automated theorem prover allows us to prove
properties such as memory safety or type safety with
relatively small amount of proof effort compared to using
a proof assistant, as shown in the examples of ExpressOS
and Verve. The low annotation ratio makes this approach
appealing for building many practical systems. One can
imagine that the time spent in annotation is well-rewarded
by the time saving in less debugging and less testing.

While guaranteeing memory and type safety alone may
be sufficient for some applications, there are applications
that would require additional assurance such as functional
correctness. Automated theorem prover offers less con-
trol than a proof assistant, and thus projects that benefit
from the ease of proving memory safety and type safety
would have to pay a steep price once they need to prove
additional properties such as functional correctness. The
alternative of doing all proofs in a proof assistant such
as Coq from the beginning may contradict with the soft-
ware engineering goals of rapid development and frequent
iterations for practical system building.

We imagine that there could be a better verification
toolchain that offers the ease of proving memory/type
safety properties as well as the flexibility of incrementally
proving more complex properties when needed.

5 Conclusion

In this paper, we provided a systematic survey of existing
formal verification approaches and created a taxonomy of
those approaches based on various aspects. We pointed

some challenges with existing approaches for building
practical systems and hopefully shed some light on what
research problems are interesting to work on in the future.

References

[1] Claiming bitcoin’s bug bounty. http:
//hackingdistributed.com/2013/11/27/

bitcoin-leveldb/.

[2] Amazon S3 availability event: July 20, 2008. http:
//status.aws.amazon.com/s3-20080720.html.

[3] Linux kernel bug tracker.
kernel.org/.

https://bugzilla.

[4] E. Cohen, M. Dahlweid, M. A. Hillebrand,
D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A practical system for ver-
ifying concurrent C. In Proceedings of the 22nd
International Conference on Theorem Proving in
Higher Order Logics (TPHOLs), pages 23-42, Mu-
nich, Germany, Aug. 2009.

[5] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad Apps: End-
to-end security via automated full-system verifica-
tion. In Proceedings of the 11th Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 165-181, Broomfield, CO, Oct. 2014.

[6] G.Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
M. Norrish, R. Kolanski, T. Sewell, H. Tuch, and
S. Winwood. selL4: Formal verification of an OS
kernel. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP), pages 207—
220, Big Sky, MT, Oct. 2009.

[7] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusu-
dan. Verifying security invariants in ExpressOS. In
Proceedings of the 18th International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 293-304,
Houston, TX, Mar. 2013.

[8] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and
Z. Tatlock. Jitk: A trustworthy in-kernel interpreter
infrastructure. In Proceedings of the 11th Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), pages 33—47, Broomfield, CO, Oct.
2014.

[9] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock,
X. Wang, M. D. Ernst, and T. Anderson. Verdi: A
framework for implementing and formally verify-
ing distributed systems. In Proceedings of the 2015

http://hackingdistributed.com/2013/11/27/bitcoin-leveldb/
http://hackingdistributed.com/2013/11/27/bitcoin-leveldb/
http://hackingdistributed.com/2013/11/27/bitcoin-leveldb/
http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html
https://bugzilla.kernel.org/
https://bugzilla.kernel.org/

ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), Portland,
OR, June 2015.

[10] J. Yang and C. Hawblitzel. Safe to the last instruc-
tion: Automated verification of a type-safe oper-
ating system. In Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 99-110,
Toronto, Canada, June 2010.

	Introduction
	Formally Verified Systems
	Operating Systems
	Jitk
	ExpressOS
	Verve
	seL4
	VCC

	Reactive and Distributed Systems
	Ironclad Apps
	Verdi
	Quark
	Reflex

	Compilers
	Compcert
	VST
	Bedrock

	Challenges
	Research Problems
	Verified Bitcoin Scripting Engine
	An Incrementally Verifiable System

	Conclusion

