
Draconis: Rethinking the Storage Stack

Jialin Li
lijl@cs.washington.edu

1 Introduction
High performance storage systems like file systems,
databases and persistent key value stores have very high
storage I/O requirements. To maximize the efficiency
of disk I/O, these systems usually make certain assump-
tions about the performance characteristics of the under-
lying storage medium, and design their disk read/write
patterns accordingly. Some of the common assumptions
include: sequential accesses are faster than random ac-
cesses, minimum read/write size should be a sector (512
bytes), batching writes into a large chunk is more effi-
cient than writing small pieces, etc. Most of these as-
sumptions are based on characteristics of a spinning disk,
and therefore usually give applications efficient storage
I/O when actually running on spinning disks.

However, newer storage technologies like NAND
SSDs, phase change memory and memristors all have
very different performance characteristics from spinning
disks. For example, SSDs do not have moving me-
chanical parts and therefore do not incur the extra seek
penalty when accessing random addresses; the minimum
read/write size is an SSD page size, which is typically
4KB; pages need to be erased before writing new con-
tent, causing in place updates to be very costly. Not
surprisingly, applications written for spinning disks will
not have the optimal performance on these newer stor-
age technologies. To make the issue more problematic,
different products of the same technology may have very
different performance properties. SSDs for instance have
different Flash Translation Layers (FTLs), and depends
on the translation scheme, random writes can be much
slower or equally fast as sequential writes. As a re-
sult, applications optimized for one SSD may have much
worse performance on another SSD.

The problem involves more than just the application
layer. Operating systems’ storage I/O subsystem are
also designed around a slow spinning disk: the disk in-
terface only has simple sector read/write, I/O schedul-
ing and buffer cache design optimize for sequential ac-
cesses and batching, etc. Even when applications make
the correct assumptions, the operating system may to-
tally disturb the disk access pattern, leads to non-optimal
performance. With applications, operating systems, file
systems, drivers, disk controllers and disk hardware all
optimizing with only local information, it becomes ex-
tremely difficult for the application to have any end to

end storage performance guarantees.
This project thus aims to revisit storage system de-

sign across the stack. The goal of the project is twofold.
Firstly, understand the inefficiencies caused by applica-
tion’s wrong assumptions about the storage hardware
and by the interference from multiple storage layers.
This will involve measurements of several storage ap-
plications on different storage technologies (spinning
disks and SSDs) and performance analysis against raw
hardware capabilities. Secondly, base on the observa-
tions from the measurement study, propose a new stor-
age stack design that optimizes applications’ I/O perfor-
mance across different storage hardware. This may in-
volve redesign of the OS I/O subsystem, storage API,
disk driver/controller or the application.

2 Diverse Hardware
2.1 Spinning Disks
Magnetic spinning disk, or hard disk drive, is still the
most widely used persistent storage technology. As
the name suggested, magnetic disks have spinning plat-
ters and moving disk heads that read and write data by
sensing or magnetizing platter surfaces. The minimum
read/write size on a hard disk drive is a sector, which is
usually 512 bytes. To read or write to a particular sec-
tor, the disk has to first move the disk head to the desired
track (seek time) and then wait for the platter to spin until
the target sector is under the head (rotation time). Aver-
age seek times are typically around 5-10 ms and average
rotation latencies are around 4 ms for 7,200 HDDs and 2
ms for 15,000 HDDs.

Due to the costly seek and rotation latencies, spinning
disks perform badly when doing small and random ac-
cesses. It is not surprising that applications and operating
systems try to optimize performance running on a hard
disk drive by amortizing the access latencies. One com-
mon technique is to buffer small writes in memory and
only writes to disk in large sequential chunks. Another
strategy is to prefer sequential accesses over random ac-
cesses. OS has i/o scheduler that minimizes random seek
time and the native command queue (NCQ) enables the
disk drive to serve multiple outstanding requests in a se-
quential order. Many storage applications use append
only update schemes to avoid the costly random writes
altogether. Example scheme includes log-structured file
system [15], log-structured merge tree [13] and persistent

1

data structures [7].

2.2 SSDs
NAND flash based SSD is a newer storage technology
that has significantly higher performance than magnetic
spinning disks. SSDs do not have any moving mechan-
ical parts like their hard disk counterparts: data are read
and written using electrical circuits. As a result, random
accesses on an SSD are much faster. However, due to the
physical property of flash memory, a flash page has to
be erased before writing new data. Erase operations are
much slower compare to reads and writes, and SSDs can
only erase flash memories in large chunks called erasure
blocks which typically range from 128 KB to a few MB.
On the other hand, the minimum read/write size on an
SSD is a flash page which is typically 2KB, 4KB, 8KB or
16KB. Flash memory has a limited program/erase (P/E)
cycles before it becomes wear out. The number of max-
imum P/E cycles depends on the flash technology, for
example SLC flash memory usually have more than a
hundred thousand P/E cycles while MLC flash memory
only have a few thousands.

To address the challenges of slow erase operation and
limited P/E cycles, SSDs employ a flash translation layer
(FTL). FTL maps logical flash page addresses to phys-
ical page addresses. When writing to a (logical) flash
page, the FTL simply marks the old physical page as in-
valid, writes the data to an already erased physical page
and creates the new mapping. The invalid pages are later
garbage collected in the background. Consider the same
flash page write situation without an FTL: not only the
SSD needs to erase the whole erasure block that covers
the page, it also needs to copy and rewrite all the other
flash pages in the same erasure block. This translation
scheme also helps with wear-leveling: writes to hot log-
ical pages are spread across different physical pages.

The physical property of SSDs also enables bigger in-
ternal parallelism opportunities than hard disk drives. An
SSD may contain multiple flash memory packages, each
package consists of one or more dies. Within each mem-
ory die, there are two or more planes. All these compo-
nents can be accesses in parallel or interleaved, creating
large potentials of parallelism. More advanced FTL cre-
ates mappings that take full advantages of internal par-
allelism: logical addresses are stripped across packages,
dies and planes. Coupled with Native Command Queu-
ing (NCQ), modern SSDs are able offer unprecedented
throughput and bandwidth.

3 Measurements
In this section, we will show some preliminary measure-
ment results as a basis for our storage proposal. We first
measure the baseline hardware performance of a high-
end SSD and explore some of the characteristics of the

 0

 10000

 20000

 30000

 40000

 50000

512 1024 2048 4096 6144 8192

T
h

ro
u

g
h

p
u

t
[f

s
y
n

c
s
 /

 s
]

Blocksize [Bytes]

fsync rndwr throughput with different block sizes on ext4

Figure 1: SSD write throughput with varies block sizes.
The throughput is significantly higher with 4KB and
8KB blocks which demonstrates that the page size of the
device is 4KB: writes not of (multiple) page size will in-
cur expensive Read-Modify-Write.

device. We then measure the performance of a popular
key-value store, LevelDB, on the SSD as well as on a
HDD.

3.1 SSD Characteristics
As described in section 2, SSDs have a very different
hardware architecture from HDDs. To explore the per-
formance implications of the SSD architecture, we con-
duct some I/O benchmarks on an Intel DC P3700 SSD
attached through the PCIe bus. Intel DC P3700 SSD is a
high-end storage device targeting high performance data
center environment. The product specification indicates
that the drive supports up to 460K random 4KB reads
and 175K random 4KB writes. Both sequential read and
write latency are 20us. All the benchmarks are using the
i/o test from sysbench.

3.1.1 Page Size and RMW

As mentioned in section 2, the minimum read/write size
of an SSD is a flash page, and the flash page size varies
between different SSDs. To determine the page size of
our Intel DC P3700, we measure the throughput of writ-
ing different size blocks (multiples of 512 byte sectors) to
the drive. If the block size is smaller than the page size,
the SSD has to perform a Read-Modify-Write(RMW):
reads the old page into the register, modifies the block
within the page and writes the new page back to the drive.
RMW is more costly than writing an aligned page, and as
a result writing blocks smaller than page size will yield
lower throughput. Figure 1 shows that write throughput
is much higher with 4KB and 8KB blocks. This demon-
strates that the page size of the device is 4KB. Any writes
not of multiples flash page size will incur the expensive
Read-Modify-Writes.

2

 0

 10000

 20000

 30000

 40000

 50000

rndwr/512 rndwr/4096 seqrewr/512 seqrewr/4096 seqwr/512 seqwr/4096

T
h

ro
u

g
h

p
u

t
[f

s
y
n

c
s
 /

 s
]

Mode/Blocksize

fsync throughput on ext4 with different write modes

Figure 2: SSD write throughput with 3 different write
modes. Sequential and random access pattern do not
have significant differences. Sequential write (append)
has worse throughput because the file system writes meta
data which is less than flash page size, causing RMW.

3.1.2 Write Mode
We then test the throughput of different write modes.
The three write modes are random write (rndwr), se-
quential rewrite (seqrewr) and sequential write (seqwr).
Sequential writes write to blocks in numerical sequen-
tial order while random write picks blocks in random or-
der. The difference between sequential rewrite and se-
quential write is that sequential rewrite writes to an al-
ready created file with the target size, which means no
new blocks are allocated and the length of the file is not
changed(same for random write). Figure 2 shows that
random write and sequential rewrite have roughly the
same throughput. This is a direct result of SSDs not hav-
ing moving mechanical parts and random accesses are
as fast as sequential accesses. Throughput of sequential
write is much lower because the file system has to write
small meta data to the drive. These meta data are smaller
than page size and thus incur the expensive RMW.

3.1.3 Parallelism
To explore the internal parallelism of the SSD, we mea-
sure the throughput of concurrently writing flash page
size blocks to the drive. Figure 3 shows that the SSD
write throughput scales to 8 threads. The throughput
does not increase beyond 16 threads, however this is
mostly due to the hardware maximum throughput (175K
from the specification) is already reached. We believe the
experiment demonstrates that our SSD has at least 8-16
way parallelism.

3.2 LevelDB Performance
We then measure the application performance on our
Intel SSD as well as a HDD. The application we pick
is LevelDB, a popular persistent key value store em-
ployed by existing systems including Google Chrome’s

 0

 50000

 100000

 150000

 200000

1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
[f

s
y
n

c
s
 /

s
]

Threads

fsync throughput on ext4 with parallel writes using rndwr

Figure 3: SSD write throughput with increasing concur-
rency. Write throughput scales to 8 threads. Beyond
16 threads, the hardware throughput limit is reached
(175K).

IndexedDB, Bitcoin and Riak. We will first describe the
design of LevelDB and then the measurement results.

3.2.1 LevelDB
LevelDB is a popular persistent key value store em-
ployed by existing systems including Google Chrome’s
IndexedDB, Bitcoin and Riak. The design principle of
LevelDB highly resembles an LSM-tree. The in-memory
component is named memtable and on-disk components
are referred to as SSTables. All updates go directly to the
memtable, and LevelDB writes out the memtable as an
SSTable to disk when it reaches a predefined size. Entries
in an SSTable are sorted by keys and LevelDB organizes
SSTables in a hierarchical structure, called levels. Level
0 holds all the newly written out SSTables. When level
0 tables grow to a threshold, LevelDB compacts a subset
of the tables into level 1 SSTables. The same compaction
process applies to higher level tables as well, with log-
arithmically increasing threshold sizes (10MB for level
1, 100MB for level 2 etc.). SSTables in any levels other
than level 0 have non-overlapping key ranges. To pre-
serve this property, the compaction process for level N
picks one (or more in the case of level 0) SSTable and
merges with all SSTables with overlapping key ranges in
level N+1.

LevelDB provides atomicity and durability by Write-
Ahead-Logging(WAL). All updates are appended to an
on-disk log in addition to the memtable. In the face of
a system crash, LevelDB recovers recent updates from
the log (durability), and discards in-complete or cor-
rupted updates (atomicity). LevelDB deletes the old
log when writing the memtable to disk as an SSTable.
WAL appends can be configured as asynchronous or syn-
chronous. Asynchronous mode commits the operation
without waiting for the log entry to persist on disk, thus
gives better performance but could lead to data losses in

3

the presence of power failures or system crashes. Ap-
plications with strong durability requirements have to go
with the synchronous configuration.

The LSM-tree like architecture offers LevelDB an ef-
ficient disk I/O scheme. All key-value updates apply
directly to memtable, and LevelDB occasionally write
large SSTables to disk sequentially. In addition, once
SSTables are written to disk, they are never modified in-
place. During compaction, obsolete SSTables are sim-
ply deleted with newly merged SSTables appended to the
disk. This large-sequential-append only write scheme is
believed to be a good fit for both magnetic spinning disks
and SSDs. The synchronous WAL mode however re-
mains to be costly due to the long disk access latency
on each update operation. LevelDB also provides fast
read operations. LevelDB stores all SSTable indexes in
memory. All reads thus are either served from memory
(key-value resides in memtable), or require one disk ac-
cess (retrieve on-disk location by searching in-memory
indexes). Caching techniques like OS buffer cache and
application caching could further reduce the number of
disk accesses.

3.2.2 Asynchronous Writes Performance
We start with a single thread handling all LevelDB re-
quests and use the asynchronous WAL configuration.
The workload is write-only, with 16 Byte keys and 512
Byte values. Each experiment run issues a total of 8GB
key-value write requests to LevelDB. We compare the
throughput of two write patterns: sequential and skewed
random. The sequential workload writes keys in strict
numerical order. The skewed random pattern is a more
realistic workload: 90% of the keys are picked randomly
from 10% of the overall key space. This skewed distri-
bution with small “popular” regions is very common in
production workloads. We also vary the size of the over-
all key space.

Figure 4 shows the throughput of the two write pat-
terns running on a hard disk drive and an SSD. Both
hardware show similar performance results. The sequen-
tial workload has a much better throughput than skewed
random writes. To understand the reason behind this
performance divergence, we plot several LevelDB statis-
tics in Figure 5 and Figure 6. Figure 5 shows that Lev-
elDB creates the same number of level-0 SSTables re-
gardless of the workload and hardware. This is due to
LevelDB appending updates to memtable and writing out
memtable as level-0 SSTable at fixed threshold size, mak-
ing the number of memtables depends solely on the total
write size. With the same reasoning, the WAL overhead
also only depends on the total write size which is the
same across all experiments. The only remaining fac-
tor is the LevelDB compaction overhead, and Figure 6
demonstrates compaction is indeed the reason behind the

throughput divergence. The sequential workload creates
zero LevelDB compaction as compared to over thirty
thousands compactions during the skewed random work-
load. Compaction adds two significant overhead to the
system: CPU computation to merge multiple tables and
storage I/O to write the newly compacted SSTables. It
is therefore no surprise that the throughput of sequen-
tial writes is much higher. The higher number of com-
pactions also explains the lower throughput as the total
key space increases in the skewed random case. The rea-
son sequential writes create zero compaction is that the
sequential pattern creates sorted, non-overlapping key
ranges in all level-0 SSTables and thus requires no com-
paction.

The sequential write pattern essentially gives the best
possible write performance for LevelDB: with zero com-
paction, each key-value pair is written to disk only once
(plus WAL), and with the asynchronous configuration,
LevelDB writes to storage in large sequential chunks
which is efficient for both hard disk drives and SSDs.
However, in a more realistic skewed workload, Lev-
elDB’s write throughput drops by more than 4X. The
question thus follows: can we do any better? Many per-
sistent data stores, including LevelDB, use an append
only update scheme to avoid the expensive in-place up-
dates. An side-effect of this update scheme is that it
leaves obsolete data on disk and thus requires garbage
collection. LevelDB uses compaction to garbage col-
lect invalid key-value entries, and many other key-value
stores employ a similar scheme. Though this GC over-
head is inevitable, SSDs have already implemented very
efficient garbage collection in hardware. Therefore, it is
possible to utilize SSD hardware garbage collection to
improve the performance of LevelDB.

3.2.3 Synchronous Writes Performance
Next, we configure LevelDB to use synchronous WAL.
Synchronous WAL is required to guarantee durability.
Figure 7 depicts the throughput of synchronous LevelDB
with the same set of workloads. In contrast to asyn-
chronous mode, the difference in throughput between the
two write patterns is very small for both hardware, al-
though Figure 8 clearly shows that random writes still
produce significantly more compactions (the hard disk
drive is too slow we were not able to run enough op-
erations to get compactions). Turns out with the syn-
chronous configuration, LevelDB’s throughput is bottle-
necked by the storage access overhead for each write op-
eration. We verified it by measuring the throughput of
synchronously appending 512 Bytes data to a file. Fig-
ure 9 shows that LevelDB’s write throughput is indeed
close to that of file appending.

Synchronous mode gives LevelDB 250X more
throughput running on the SSD than on the hard disk

4

 10

 100

 1000

 1 2 4 8 16 32 64

T
hr

ou
gh

pu
t (

K
 o

ps
 /

s)

Key Space (GB)

SSD

Skewed Random Writes
Sequential Writes

 1

 10

 100

 1000

 1 2 4 8 16 32 64

T
hr

ou
gh

pu
t (

K
 o

ps
 /

s)

Key Space (GB)

HDD

Skewed Random Writes
Sequential Writes

Figure 4: Comparing sequential and random 90/10 write throughput with increasing key space

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4 8 16 32 64

N
um

be
r

of
 L

v0
 T

ab
le

s

Key Space (GB)

SSD

Skewed Random Writes
Sequential Writes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4 8 16 32 64

N
um

be
r

of
 L

v0
 T

ab
le

s

Key Space (GB)

HDD

Skewed Random Writes
Sequential Writes

Figure 5: Number of level-0 SSTables created during each experiment run.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 4 8 16 32 64

T
ot

al
 N

um
be

r
of

 C
om

pa
ct

io
ns

Key Space (GB)

SSD

Skewed Random Writes
Sequential Writes

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 4 8 16 32 64

T
ot

al
 N

um
be

r
of

 C
om

pa
ct

io
ns

Key Space (GB)

HDD

Skewed Random Writes
Sequential Writes

Figure 6: Total number of LevelDB compactions during each experiment run.

5

drive, as compared to the mere 4X difference in the asyn-
chronous mode. The 3 orders of magnitude difference in
access latency between the disk and the SSD justifies the
result in the synchronous configuration, while the asyn-
chronous mode is mostly in-memory. It is exactly this
miserable performance number with synchronous writes
on HDD that lead to people opt for the faster but less
durable asynchronous mode. However, the continuous
improvement on storage device speed is making syn-
chronous writes more feasible. On the other hand, many
of the OS storage stack design options are around a mag-
netic spinning disk and are not optimized for the newer
technologies. SSDs have a minimum writing size (page
size) of more than 2KB. When writing less than a page
size, an SSD has to do a read-modify-write which is
much more costly than writing a whole page. However,
the OS issues writes to storage devices in sectors which
are 512 Bytes. With LevelDB writing small key-value
pairs, the SSD has to incur the expensive read-modify-
write overhead all the time. Figure 9 demonstrates that
writing to a file with exact flash page size (4KB) gives
more than 4X the throughput, but only when updating
not appending. The reason is that the file system has to
write additional meta data to the SSD when doing file
appends, and with those meta data less than a page size,
it will also incur the read-modify-write penalty.

4 Problem Statement and Proposal
We believe there are 3 problems in the current stor-
age stack design that lead to sub-optimal storage perfor-
mance. In this section, we will describe the problems and
propose a new stack design option.

4.1 Problems
Firstly, storage applications are explicitly making
hardware-level decisions. For example, applications are
specifying the actual data layout on storage hardware, in-
cluding addresses, alignments, SSD erasure blocks etc.;
the writing scheme depends on hardware characteristics,
for instance, avoid expensive in-place updates by do-
ing append-only writes; grouping writes into hardware
specific blocks like sectors (512 Bytes) or pages (4KB).
However, it is very hard for applications to get the ex-
act hardware details it is running on, which is further
hindered by storage hardware vendors who extensively
hide hardware details. Consequently, applications have
to make assumptions and when their assumptions are in-
accurate (most of the time), the storage performance is
compromised.

Secondly, as shown in section 2, different storage tech-
nologies have very different performance characteristics.
Even within the same technology, different products dif-
fer in their hardware details. As a result, the aforemen-
tioned hardware-level optimizations, even if accurate on

a particular hardware, may be inefficient on other prod-
ucts. Application designers are thus forced to redesign
their system for the different hardware they are running
on, or be settled with less optimal performance.

Thirdly, the current deep storage stack interferes with
the hardware optimizations applications make. As de-
scribed in section 1, the operating system, file system,
drivers, disk controllers and disk hardware are all opti-
mizing storage performance with limited local informa-
tion. Many of these optimizations unfortunately interfere
destructively with those made by the application, leading
to sub-optimal performance.

4.2 Proposal
To address these three problems, we are proposing a new
storage stack design. As shown in Figure 10, current
applications have to specify storage hardware logic in
their code. Without modifying the application, the same
piece of logic will be applied to different storage de-
vices, leading to potential sub-optimal performance. Fig-
ure 11 shows our proposed stack design. Leveraging Ar-
rakis [14], we provide applications direct access to stor-
age hardware, bypassing the operating system kernel and
the file system, essentially solve the third problem. To
deal with the first two problems, we add a middle layer
between the application and the hardware. The layer ex-
poses an object interface to the application. Applications
can create, read, write, append and delete objects, and
specify ordering dependencies and atomicity among ob-
jects. Essentially, we allow applications to be written in
a hardware neutral way, without specifying on-disk data
layout, consistency implementation, update pattern, etc.
The layer then has a hardware dependent component that
implements the interface for each storage device. The
implementation is hardware specific, and optimizes for
the target device. For example, a HDD will have a LSF
like implementation while an SSD may require a more
efficient COW implementation. We envision the hard-
ware vendor who understand the device best to imple-
ment this hardware dependent component to maximize
performance.

5 Related Work
5.1 Flash Characteristics
Flash memory and flash memory based solid state drives
have been a hot research area in recent years. SSDs have
very different hardware characteristics compare to spin-
ning disks [6]: the minimum read/write size is a flash
page which is different on different SSDs; flash pages are
grouped into erasure blocks, and the hardware needs to
erase the entire block before writing new data; there is a
Flash Translation Layer that deals with wear leveling and
hides costly erasures. SSDs also contain multiple mem-
ory chip packages that can be accessed concurrently, cre-

6

 1

 10

 100

 1 2 4 8 16 32 64

T
hr

ou
gh

pu
t (

K
 o

ps
 /

s)

Key Space (GB)

SSD

Skewed Random Writes
Sequential Writes

 1

 10

 100

 1 2 4 8 16 32 64

T
hr

ou
gh

pu
t (

op
s

/ s
)

Key Space (GB)

HDD

Skewed Random Writes
Sequential Writes

Figure 7: Comparing write throughput using synchronous write mode.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 4 8 16 32 64

T
ot

al
 N

um
be

r
of

 C
om

pa
ct

io
ns

Key Space (GB)

SSD

Skewed Random Writes
Sequential Writes

 0

 2

 4

 6

 8

 10

 1 2 4 8 16 32 64

T
ot

al
 N

um
be

r
of

 C
om

pa
ct

io
ns

Key Space (GB)

HDD

Skewed Random Writes
Sequential Writes

Figure 8: Total number of LevelDB compactions in synchronous mode. We did not run the HDD experiment long
enough to get compactions due to its slow speed

 0

 10

 20

 30

 40

 50

LevelDB AP512B AP4KB UD4KB

T
hr

ou
gh

pu
t [

K
 o

ps
 /

s]

SSD

 0

 10

 20

 30

 40

 50

LevelDB AP512B AP4KB UD4KB

T
hr

ou
gh

pu
t [

op
s

/ s
]

HDD

Figure 9: Comparing LevelDB synchronous throughput to file writes with different write sizes. AP denotes appends
and UP is updates.

7

Application

Applica'on	

Logic	

Hardware	

Op'miza'on	

Applica'on	

Logic	

Hardware	

Op'miza'on	

Applica'on	

Logic	

Hardware	

Op'miza'on	

Applica'on	

Logic	

Hardware	

Op'miza'on	

File	
 System	
 API	

Figure 10: Current storage stack. Application program-
mers have to specify storage hardware logic in their
application code, including data-layout, write pattern,
block sizes etc.

Application

Applica'on	

Logic	

Draconis	

HDD	
 Logic	
 SSD	
 Logic	
 PCM	
 Logic	

Objects	
 Transac'on	
 Dependency	
 Locality	

Figure 11: Our proposed stack design. Applications can
use the Draconis interface to specify machine indepen-
dent logic without constraining storage hardware specific
decisions. The interface will have a hardware dependent
component for each individual storage device.

ating chances of internal parallelisms [4]. Performance
characteristics vary significantly across SSDs [3] [10].
For example, sequential and random access patterns have
very different latency and throughput effects on different
SSDs.

5.2 Storage Systems Built for SSD
We are not the first one who identify that applications
written for spinning disks are not efficient on SSDs.
NVMKV [12] directly uses FTL in SSDs to maintain key
value mappings, minimizing meta data at the KV layer
and bypassing the file system. DFS [9] similarly uses Fu-
sionIO SSD’s virtualized flash storage layer for file block
allocations and reclamations. Both FlashStore [5] and
Silt [11] avoid the expensive random updates on SSDs
by writing all updates as a log.

5.3 Storage Stack Redesign
Arrakis [14] reduces storage stack overhead by giving
applications direct accesses to the storage hardware, by-
passing the OS kernel and the file system. However,
Arrakis does not solve the issue of efficient use of the
hardware with different performance properties. There
is a also long line of research that provides applications
a customized storage stack, like Exokernel [8], Neme-
sis [1] and SPIN [2]. However, they do not go beyond
the mechanism and propose any actual stack design that
optimizes I/O performance on different hardware.

References
[1] P. R. Barham. Devices in a multi-service operating

system, 1996.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility safety and performance in
the spin operating system. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, pages 267–283, New York,
NY, USA, 1995. ACM.

[3] F. Chen, D. A. Koufaty, and X. Zhang. Understand-
ing intrinsic characteristics and system implications
of flash memory based solid state drives. In Pro-
ceedings of the Eleventh International Joint Con-
ference on Measurement and Modeling of Com-
puter Systems, SIGMETRICS ’09, pages 181–192,
New York, NY, USA, 2009. ACM.

[4] F. Chen, R. Lee, and X. Zhang. Essential roles
of exploiting internal parallelism of flash memory
based solid state drives in high-speed data process-
ing. In Proceedings of the 2011 IEEE 17th Interna-
tional Symposium on High Performance Computer
Architecture, HPCA ’11, pages 266–277, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

8

[5] B. Debnath, S. Sengupta, and J. Li. Flashstore:
High throughput persistent key-value store. Proc.
VLDB Endow., 3(1-2):1414–1425, Sept. 2010.

[6] P. Desnoyers. What systems researchers need to
know about nand flash. In Proceedings of the 5th
USENIX Conference on Hot Topics in Storage and
File Systems, HotStorage’13, pages 6–6, Berkeley,
CA, USA, 2013. USENIX Association.

[7] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. J. Com-
put. Syst. Sci., 38(1):86–124, Feb. 1989.

[8] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An operating system architecture for
application-level resource management. In Pro-
ceedings of the Fifteenth ACM Symposium on Op-
erating Systems Principles, SOSP ’95, pages 251–
266, New York, NY, USA, 1995. ACM.

[9] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li.
Dfs: A file system for virtualized flash storage. In
Proceedings of the 8th USENIX Conference on File
and Storage Technologies, FAST’10, pages 7–7,
Berkeley, CA, USA, 2010. USENIX Association.

[10] M. Jung and M. Kandemir. Revisiting widely
held ssd expectations and rethinking system-level
implications. In Proceedings of the ACM SIG-
METRICS/International Conference on Measure-
ment and Modeling of Computer Systems, SIG-
METRICS ’13, pages 203–216, New York, NY,
USA, 2013. ACM.

[11] H. Lim, B. Fan, D. G. Andersen, and M. Kamin-
sky. Silt: A memory-efficient, high-performance
key-value store. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 1–13, New York, NY, USA, 2011.
ACM.

[12] L. Mármol, S. Sundararaman, N. Talagala, R. Ran-
gaswami, S. Devendrappa, B. Ramsundar, and
S. Ganesan. Nvmkv: A scalable and lightweight
flash aware key-value store. In Proceedings of the
6th USENIX Conference on Hot Topics in Stor-
age and File Systems, HotStorage’14, pages 8–8,
Berkeley, CA, USA, 2014. USENIX Association.

[13] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil.
The log-structured merge-tree (lsm-tree). Acta Inf.,
33(4):351–385, June 1996.

[14] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Ar-
rakis: The operating system is the control plane.

In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 1–
16, Broomfield, CO, Oct. 2014. USENIX Associa-
tion.

[15] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file system.
In Proceedings of the Thirteenth ACM Symposium
on Operating Systems Principles, SOSP ’91, pages
1–15, New York, NY, USA, 1991. ACM.

9

	Introduction
	Diverse Hardware
	Spinning Disks
	SSDs

	Measurements
	SSD Characteristics
	Page Size and RMW
	Write Mode
	Parallelism

	LevelDB Performance
	LevelDB
	Asynchronous Writes Performance
	Synchronous Writes Performance

	Problem Statement and Proposal
	Problems
	Proposal

	Related Work
	Flash Characteristics
	Storage Systems Built for SSD
	Storage Stack Redesign

