
Key-value store cluster with programmability in NICs and switches

CSE551 Final Report

Antoine Kaufmann (antoinek@), Naveen Kumar Sharma (naveenks@)

1 Introduction

Today’s data center applications such as key-value
stores generally run on multiple servers and on mul-
tiple cores for each sever in order to be able to handle
the request loads. As a consequence, a steering and
load-balancing decision needs to be made for each re-
quest about which server and core it should be han-
dled by. Table 1 provides an overview of common
approaches to load balancing, and how they are im-
plemented for balancing across servers and across ma-
chines.

The different load-balancing options involve differ-
ent trade-offs: When using dedicated load-balancer
servers or cores, scaling up to high loads can be
problematic. While using multiple severs for load-
balancing is possible, one disadvantage is that the
individual load-balancing servers no longer have a
global view of the load which complicates dynamic
load balancing. Dedicating cores in the end-servers
for steering and balancing packets to worker cores can
take up a significant number of cores for load balanc-
ing that cannot be used for processing requests. Im-
plementing load balancing on the servers and server
cores by forwarding requests uses up server resources
for load balancing that could otherwise be used for
processing requests. Further, forwarding packets also
comes at the cost of increased latency and increased
network/interconnect utilization. In the case where
servers are forwarding requests to other servers, the
servers also need up-to-date load information to for-
ward requests to the right servers. A similar issue
arises when the clients make load balancing decisions,
because clients will also need up-to-date load infor-
mation. This can significantly complicate dynamic
load balancing.

Our project investigates using emerging pro-
grammable network hardware, namely switches [2]

and NICs [4] to efficiently scale up a key-value store
to multiple cores as well as multiple servers. Sec-
tion 2 discusses how application-aware packet steer-
ing in the NIC improves scalability with increasing
numbers of cores and describes the implementation
of our scalable key-value store. In section 3 we dis-
cuss the advantages of implementing load-balancing
inside the network in switches, and present a pre-
liminary performance evaluation. Finally we discuss
opportunities for further research in section 4.

2 Load Balancing across Cores

For a multi-core server running a key-value store re-
quests need to be assigned to cores. To avoid the
overhead of bouncing packet between cores, which
can quickly become prohibitively expensive, we want
the NIC to steer packets to the right core. Current
NICs already support steering packets to multiple
hardware queues that can be accessed from different
cores without synchronization. Most commonly pack-
ets are assigned to hardware queues using receive-side
scaling, in which case the NIC calculates a hash over
packet fields for the IP addresses and port numbers
and uses this hash to steer the packet to a hardware
queue, which means that packets for a particular flow
arrive on the same core. In the scenario of a key-value
store a single connection generally issues a large num-
ber of requests and the popularity of keys is heavily
skewed. This generally leads to synchronization and
cache-coherence overheads for the indexing structure,
most commonly a hash table, because popular items
are accessed concurrently from multiple cores.

To avoid these overheads our goal is to use a more
flexible NIC to steer requests to cores based on the
key in the request. This effectively partitions accesses
to the hash table, and therefor avoids synchronization
and cache-coherence overheads. We then also went

Cores Servers

Load-balancer core(s) Load-balancer server(s)
Bounce requests to other cores Forward requests to other servers

Client chooses port Client chooses server

Table 1: Load-balancing techniques for balancing across cores and servers

one step further and investigated what other opti-
mizations can be enabled by a programmable NIC by
breaking with the traditional NIC DMA interface.
Note: The following section summarizes the re-

sults from Antoine’s quals report, but in order to
avoid duplicating the information there many details
were omitted here, but are available in the quals re-
port for reference.

2.1 Key-value store implementation

We implemented a simple key-value store from
scratch with the goal of avoiding scalability bottle-
neck when requests arrive partitioned, and generally
processing requests at high rates. The design uses
an memory allocator for key-value pairs that is based
on a segmented log per core and a centralized seg-
ment allocator. Thus, in the common case allocating
memory just boils down to incrementing the log po-
sition. Garbage collection on the log is performed
out of band on a separate core. The buffers stor-
ing key-value pairs are immutable to allow zero-copy
operation without requiring synchronization. For in-
dexing items we use a hash table where each bucket
has the size of a cache line (to avoid false sharing),
contains a lock and both pointers and the hashes of
up to 5 elements. In the case of a bucket overflowing,
the last element in the bucket is used as the head of
a linked list of items.

2.2 Evaluation: key-based steering

Because we currently do not have access to pro-
grammable NICs, we emulate key-based steering with
a regular Intel 10GbE NIC by having the client place
the key for the request (we’re assuming key-sizes ≤ 32
bytes) in the IPv6 source and destination address
fields, and configure the NIC to only consider the
IP-address for calculating the RSS hash. This allows
us to implement key-based steering on the server side
at line-rate, thereby enabling an end-to-end perfor-
mance evaluation. In addition, the NIC also reports
the calculated hash to software for every packet al-
lowing us to use this hash for the hash-table lookup.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

Cores

Key-based
Flow-based

Figure 1: Key-value store throughput at varying
numbers of cores comparing flow-based steering to
key-based steering.

We compared the throughput of this RSS-based
emulation against the baseline of regular connection-
based RSS with varying numbers of cores. The ex-
perimental setup consists of a 6 core sandy-bridge
machine with two aggregated 10GbE ports connected
to a switch, and two client machines generating re-
quests. The workload parameters are: 100K key-
value pairs, 32 byte keys, 64 byte values, a Zipfian
popularity distribution with parameter s = 0.9, and
a mix of 90% GET + 10% SET operations. Figure 1
compares the throughput for both cases with differ-
ent numbers of worker cores. As expected we see a
significant throughput improvements (30-45%), and
our results also hint at scalability improvements. Un-
fortunately performance is currently limited by PCIe
throughput, because of the large number of small
transactions. We expect that this can be somewhat
alleviated by configuring the NIC to do more aggres-
sive batching for PCIe transactions.

2.3 Evaluation: modified DMA inter-
face

We also evaluated what performance gains are pos-
sible if the NIC provides a more flexible DMA in-
terface, allowing us to customize the DMA interface

Baseline Steering Opt. DMA

Median 1110 690 440
90th Percentile 1400 1070 680

Table 2: Request processing time in cycles for the
baseline of flow-based steering, with key-based steer-
ing, and the specialized DMA interface.

to our key-value store use-case. With current NICs,
packets are transferred to memory unmodified using
descriptor queues. In order to receive packets, the ap-
plication needs to first register a number of fixed-sized
receive buffer, and when the NIC receives packets it
will copy them in order into those buffers and hand
ownership for the corresponding descriptors back to
the application. Because the buffer sizes are fixed,
they need to be sized for the worst case, and when the
key-value store processes a SET request, it needs to
copy the actual key-value pair from the packet into an
appropriately sized item structure. All of this causes
significant overhead when processing requests.

With a programmable NIC, we can have the NIC
parse the packet and transfer the required informa-
tion for software to process the request, based on the
request type. For a GET request we simply append a
client identifier, the hash, and the key to a contiguous
event queue. In the case of a SET request, we append
the client identifier and the hash to the event queue,
and append the key-value pair to a separate item log.
If we do this, the software part running on the CPU
basically only manipulates the hash table and per-
forms garbage collection on the log. We implemented
an emulation of a NIC with this behavior in software,
and ran it on a dedicated core. We then measured
the number of cycles spent in software for processing
a request, and compared it against the baseline with
connection-based steering, as well as the key-based
steering using RSS. The results are shown in Table 2,
and show a cumulative reduction in request process-
ing time of roughly 60%, of which 37% are due to the
more efficient DMA interface.

3 Load Balancing across
Servers

We take the approach in the previous section and ap-
ply it a layer above at the top-of-rack switch level.
The flexibility inside the network switching chips al-
lows us to route packets to desired servers based on

the key embedded in the packet header and dynamic
load metrics at the servers. The primary benefit of
doing this is that the load-balancing can be done
solely within the servers and network without involv-
ing the client, and achieving near perfect scalabil-
ity. Moreover, the switches can update their forward-
ing decisions based on the dynamic load seen by any
server or react faster in response to server failures.

This flexibility in switching hardware had been pro-
posed by several manufacturers such as Intel, Cavium
and Barefoot Networks. Most of them use a Recon-
figurable Match-Action Tables (RMT) to parse and
process custom packet headers. We can embed the
key inside the packet header and use the switching
chip to make forwarding decisions based on the key
value. Moreover, we can populate the match-action
tables with dynamic load information which can help
the switch perform desired load balancing.

3.1 Evaluation: key-based routing

Since we don’t have access to actual flexible switch-
ing chips, we evaluate key-based routing using the
link aggregation feature in today’s switches. Using
link aggregation, multiple physical links are combined
into a single logical channel and any packet is for-
warded over exactly one physical link based on a hash
of packet header fields. This provides load balancing
over multiple links, as well as redundancy from failing
links while maintaining connection affinity.

We emulate key-based routing on an Arista 7150
switch by having the client place the key for the
request (assuming key-sizes 32 bytes) in the IPv6
source and destination address fields, and config-
ure the switch to do link aggregation on outgoing
server links using a hash over IP addresses and ports.
This allows us to implement key-based routing on the
switches at line-rate, thereby enabling an end-to-end
performance evaluation.

TestBed Setup: We tested our implementation
on our testbed consisting of 7 machines connected to
the same Arista 7150 switch via 10Gbps links. We
start off by a single server and increase the number
of servers till 4 while link aggregating them at the
switch. All other machines act as workload generat-
ing clients. Table 3 shows the increase in throughput
we achieve by adding more servers. We obtain perfect
scalability till 4 servers. The absolute throughput is
low on purpose so that we can generate enough load
to saturate the servers. This was done by adding an
artificial delay while processing messages inside the
key-value store. Further, we could not go beyond 4

Servers Throughput Ops/s

1 320,017 (1x)
2 633,712 (1.98x)
3 950,914 (2.97x)
4 1,296,183 (4.05x)

Table 3: Throughput with increasing servers

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 0 2 4 6 8 10 12

#
 M

ill
io

n
 O

p
e
ra

ti
o
n
s

Workers

Zipf
Uniform

Figure 2: Resulting load-imbalance from static load
balancing with Zipfian and uniformly distributed key
popularity. Workers are sorted by increasing load.
.

servers due to lack of workload generating client ma-
chines connected to the same switch.

4 Future Work

This section discusses a number of options for future
research on this project.

4.1 Dynamic load-balancing

So far we have implement simple hash-based static
load balancing by calculating a hash over the key and
then taking the hash modulo the number of cores
to assign it to a core/server. Even assuming that
key-popularity does not change over time, significant
imbalances can occur, which require more advanced
balancing techniques.

Figure 2 shows how requests are distributed to
cores for the workload mentioned above, both with
the Zipfian distribution for key popularity used above
and also with a uniform distribution. For the uniform
distribution the core with the largest number of re-
quests received 13% more requests than the core with
smallest number of requests. With the Zipfian dis-
tribution, the differences are significantly more pro-

nounced, and the core with the heaviest load pro-
cessed 155% more requests than the most lightly
loaded core.

This can be addressed with dynamic load balanc-
ing, where requests are assigned to cores based on
the current load instead of statically. In a class
project for CSE521 (Algorithms) this quarter, An-
toine started investigating an implementation of this
using two algorithmic techniques: balanced alloca-
tion with power of 2 choices, and heavy hitters with
the count-min sketch. The approach tries to avoid
load imbalance by steering requests for popular keys
to any of d candidate servers based on hashing, which
significantly reduces load imbalance (there are theo-
retic results quantifying the expected benefits), with-
out distributing the majority of less popular keys over
multiple servers which would result in increased mem-
ory requirements and reduced locality. The count
min-sketch used is a technique to probabilistically
identify popular keys with sub-linear space require-
ments on the load balancer. Preliminary evaluation
has shown that these benefits hold in practice, but a
full performance evaluation has not been performed
yet. Further, we expect that this technique could be
implemented on the data plane of a programmable
switch in the abstractions provided by P4 [1], a high-
level programming language for programmable net-
work hardware.

4.2 Performance tuning and addi-
tional evaluation

We are confident that further optimizations can be
implemented for increasing the throughput that can
be achieved by our key-value store. One example of
this is making more efficient use of the PCIe bus by
configuring the NIC to batch descriptor write-backs
etc. There are also a number of other parameter that
can be tuned on the NIC. In addition we also ex-
pect that significant throughput gains are enabled by
employing techniques to hide latency for memory ac-
cesses by using batching and manual prefetching [3].

We are also interested in extending the software
simulation for the flexible DMA interface to be able to
use multiple cores for simulating the NIC. This would
allow us to also get some throughput benchmarks. In
addition the software emulation could also be used
to get performance estimations for an architecture
where the NIC is more closely integrated with the
CPU, thereby getting rid of PCIe overheads.

4.3 Other applications

Finally, we are planning to evaluate the benefits of
a programmable NIC and programmability inside
the network for other applications. We believe that
similar techniques can be applied to other request-
response applications. But other applications such
as packet inspection could also benefit from pro-
grammable network hardware.

References

[1] Pat Bosshart, Dan Daly, Glen Gibb, Mar-
tin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, and David Walker. P4: Pro-
gramming protocol-independent packet proces-
sors. SIGCOMM Computer Communication Re-
view, 44(3):87–95, July 2014.

[2] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George
Varghese, Nick McKeown, Martin Izzard, Fer-
nando Mujica, and Mark Horowitz. Forward-
ing metamorphosis: Fast programmable match-
action processing in hardware for SDN. In 2013
ACM Conference on SIGCOMM, SIGCOMM,
2013.

[3] Anuj Kalia, Dong Zhou, Michael Kaminsky, and
David G. Andersen. Raising the bar for using gpus
in software packet processing. In 12th USENIX
Symposium on Networked Systems Design and
Implementation, NSDI, 2015.

[4] Antoine Kaufmann, Simon Peter, Thomas Ander-
son, and Arvind Krishnamurthy. FlexNIC: Re-
thinking network DMA. In 15th Workshop on
Hot Topics in Operating Systems, HOTOS, 2015.

	Introduction
	Load Balancing across Cores
	Key-value store implementation
	Evaluation: key-based steering
	Evaluation: modified DMA interface

	Load Balancing across Servers
	Evaluation: key-based routing

	Future Work
	Dynamic load-balancing
	Performance tuning and additional evaluation
	Other applications

