
Termite: Driver Synthesis

Drivers!

● Historically buggy, widely
varying in quality

● BSOD was historically caused by bad drivers

● Drivers are untrusted 3rd party code running
with kernel privileges

Imagining a better driver

● Verification? Bounded model checking?
Better testing?

● Intuition: most drivers in the same class are
(basically) the same
○ All hardware in the same class act more or less the

same
○ All drivers in the same class will use the same OS

interface

1. Specify OS interface

2. Specify the device-class behavior

3. Specify the device hardware behavior

Termite: at a high level

Gluing it all together

● The three specifications “communicate” via
messages

● Behavior of each part is specified as a state
machine
○ Specified in a sort of process logic

OS interface

1. Specify OS interface

2. Specify the device-class behavior

3. Specify the hardware behavior

OS behavior

● OS requests are modeled as incoming
messages to driver

● This state machine specifies the possible
requests sent to the driver (and expected
response)

OS behavior

● Unclear where this is derived from

● Likely from existing code

Device-class behavior

1. Specify OS interface

2. Specify the device-class behavior

3. Specify the hardware behavior

Device-class specifications

● High-level description of what the device can
do
○ what “kind” of devices is it, e.g. ethernet adapter, SD

card reader, etc.

● Agreed upon by regulatory body like IEEE
○ possibly extended by specific device manufacturers

Hardware behavior

1. Specify OS interface

2. Specify the device-class behavior

3. Specify the hardware behavior

Hardware specification

● Maps high-level device-class messages into
low level hardware actions
○ set this register to X value
○ wait for Y interrupt…

● Hardware specific
○ but the device-class “interface” makes it reusable

across OS’s

Hardware specification

● Informal, plain text documentation
○ i.e., manufacturer data sheets
○ But… incomplete, possibly out-of-sync with device

● Existing reference implementation
○ Exact, unambiguous spec
○ But… bugs in existing implementation will carry over

● Hardware RTL
○ Exact, 100% complete and in-sync with H/W
○ But… usually proprietary, not easy to get to

Synthesis algorithm

● There are two state machines (OS/Device)
● They are merged into a big state machine

encoding all possible behaviors
○ This isn’t necessarily the behavior we WANT

● Synthesis as two-player reachability game:
○ Device driver is winning strategy in the game

Generating C code

● Driver is output as a big mess of C code

● Refer to example; they don’t really explain
the process

Performance

Nearly identical:

Limitations

● Synthesized drivers are single threaded
● Some manual hacking is required

○ Synthesis cannot handle editing buffers
● Drivers are required to look like state

machines
○ Moving away from this in Termite2?

Discussion

● Is writing their spec easier that writing the
code?

● Can we autogenerate from RTL? to RTL?
● They rely on separation of concerns: OS

side vs. device side. Where else could this
be leveraged?

● Could a system like this be widely adopted?

