Singularity






Language runtimes are sloooooow!

e Long-held objections to single-address-

space systems:
o Safe Language runtimes enforce a tax on all code

e “With garbage collection, the winning move
IS not to play.” -- some guy’s blog
o You know it's legit because “There are—and this is
not a joke—over 100 citations in this blog post.”



Taxes of Hardware Protection

e Hardware isolation is not free --

o Just turning on the TLB (paging) introduced ~5%

degradation on a WebFiles benchmark
o Separate aspaces increased cost to ~18%
o Mode switch raises cost to ~33%

e \We've lived with the cost for 30+ yrs;



What is verified?

e Type and memory safety of programs (via
Sing#)
o Corollary: SIPs are isolated from each other

e Adherence to channel contracts

e Correctly-versioned ABI usage

But in principle, anything? (via manifests/PCC)



Heap structure

e Processes have private heaps
e Exchange heap for transferring data cross-
SIP

o Exchange heap can only reference other exchange

heap data
o Exchange heap objects have at most one SIP owner

e S0, zero-copy exchange between SIPs using
channels



e In 2003, GC was critical to safe languages
e Singularity reflects that attitude

o Every process has its own GC -- SIP isolation
guarantees safety

e But today? Rust’'s ownership system is an
alternative

o |solation helps again: can run both GCed and non-
GCed SIPs without issue



Singularity kernel structure

Single address space

All ‘user’ processes & kernel run at CPL=0!
All ‘user’ processes in C# / Sing#

Process communication via typed channels
Device communication via typed channels
Drivers are run in SIPs




Singularity kernel implementation

e Mostly safe code

e Unsafe code required for GC, core MM

e Prototype work towards safe GC (otherwise
GC can violate invariants)



Channels

e Processes communicate via messages on
channels

e Contracts on channels, statically verified
channel use

e SAS - ‘just move a pointer’

e Can we get channels without the rest of
Singularity?



Hardware Implications

Does the design allow simplifying hardware?
Hardware support for verification?

“| would rather trust in the correct
Implementation of these mechanisms in
hardware” -- systems grad student



