Exokernel, IX, Arrakis

Antoine and Eric



Overview

1. Exokernel
2. IX
3. Arrakis

4. Discussion



OS: All about abstractions

e Traditional OS provides:

o Protection + resource management + HW
abstractions

e Generally there is more than one way to

abstract

o OS needs to pick one
o Different abstractions have different performance



Abstractions considered harmful

Not all applications want the same abstractions
e Performance differences

e Hiding too much information

o can make it difficult for the application to implement
functionality (e.g. databases, user space threads)

e Changing “the one” abstraction can be
difficult to impossible



Exokernel

e Kernel only implements protection
e Abstraction is implemented in user space

e EXpose:
e Hardware (securely)
e Physical Names
e Allocation
e Revocation



Library Operating Systems

e Implement abstractions in user space

e Application can choose which library to use

o Abstractions can be tailored to application
o No need for general purpose implementations

e Can avoid many kernel crossings: function
calls instead of system calls



Secure Bindings

e Separate authorization from use

e Only perform authorization check at bind
time

e At access time only simple access check
required

e Implement using: hardware, caching, and
downloading code



“Downloading” code into kernel

e Allows pieces of code to be pushed into
kernel

e Not specific to an application

e Helpful for things that need to go fast like
packet filters

c.f. Berkeley Packet Filter in Linux



Linux I/O Performance

% OF 1KB REQUEST TIME SPENT \
GET [a\VAE:A Kernel 62% App 20% 9 us

Redis

seT | Kernel 84% PP 463 us

13% 3%

/ API

Naming

J
Multiplexing \
Kernel Access control /0 Scheduling
I/O Processing Copying

\ Protection | /

10G NIC RAID Storage
2 us / 1KB packet 25 us / 1KB write



Stolen IX slides



Arrakis

e Directly map vNIC into applications
e Implement network stack as a library
e Use hardware features for protection and

demultiplexing to multiple applications:

o Hardware 1I/O virtualization: SR-I0V, IOMMU
o NIC: packet filters, rate-limiting




Arrakis: Control/Data plane split

e Kernel is control plane, data plane is fully in
user space

e Control plane not on the critical path
o Packets sent/received directly from user space

e Invoke control plane only infrequently

o Changing packet filters/rate limits
o Analogous to Exokernel’'s secure bindings



Arrakis I/O Architecture

Control Plane Data Plane
(/ —\
Redis
~ ™
Kernel \\ )
Data Path
~
N P

1/0 Devices

Protection

Multiplexing

I/0O Schedulin
NG ./




Arrakis: Storage stack

e Same idea can be applied to storage

e Direct access to storage controller for
applications

e Application-specific persistent data
structures instead of general purpose FS

e |PC interface to allow indirect access
through VFS.



Arrakis Performance
e Reduced (in-memory) GET latency by 65%

Linux BN Kernel 62% App 20% 9 us
Arrakis HW 33% liblO 35% App 32% 4 us

* Reduced (persistent) SET latency by 81%

Linux (ext4) [JEEY Kernel 84% ';f 163 us

. liblo
Arrakis HW 77% 8 App15% 31 us



IX vs Arrakis

e Do we need to protect the network stack
from the application?

O

To what degree is the OS responsible for correct
protocol implementation?

Possible problems: congestion control, others?
How does this differ from the cloud setting?
Would more hardware support help?



IX, Arrakis applicability

e Both are primarily targeted at data centers
e Are there other settings where they could be

useful?
o Mobile? Desktops?



Exokernel

e Interesting ideas for applications?
e VVMMs vs Exokernel?
e \What challenges prevent this from being the

standard kernel structure today?
o What are possible solutions to those challenges?



Specialization

e Both IX and Arrakis provide POSIX-
compatible interfaces that come with some

performance cost
o ->Inherent complexity vs performance trade-off



