
Exokernel, IX, Arrakis
Antoine and Eric



Overview

1. Exokernel

2. IX

3. Arrakis

4. Discussion



OS: All about abstractions

● Traditional OS provides:
○ Protection + resource management + HW 

abstractions
● Generally there is more than one way to 

abstract
○ OS needs to pick one
○ Different abstractions have different performance



Abstractions considered harmful

Not all applications want the same abstractions
● Performance differences
● Hiding too much information

○ can make it difficult for the application to implement 
functionality (e.g. databases, user space threads)

● Changing “the one” abstraction can be 
difficult to impossible



Exokernel

● Kernel only implements protection
● Abstraction is implemented in user space
● Expose:

● Hardware (securely)
● Physical Names
● Allocation
● Revocation



Library Operating Systems

● Implement abstractions in user space
● Application can choose which library to use

○ Abstractions can be tailored to application
○ No need for general purpose implementations

● Can avoid many kernel crossings: function 
calls instead of system calls



Secure Bindings

● Separate authorization from use
● Only perform authorization check at bind 

time
● At access time only simple access check 

required
● Implement using: hardware, caching, and 

downloading code



“Downloading” code into kernel

● Allows pieces of code to be pushed into 
kernel

● Not specific to an application
● Helpful for things that need to go fast like 

packet filters

c.f. Berkeley Packet Filter in Linux



Linux I/O Performance



Stolen IX slides



Arrakis

● Directly map vNIC into applications
● Implement network stack as a library
● Use hardware features for protection and 

demultiplexing to multiple applications:
○ Hardware I/O virtualization: SR-IOV, IOMMU
○ NIC: packet filters, rate-limiting



Arrakis: Control/Data plane split

● Kernel is control plane, data plane is fully in 
user space

● Control plane not on the critical path
○ Packets sent/received directly from user space

● Invoke control plane only infrequently
○ Changing packet filters/rate limits
○ Analogous to Exokernel’s secure bindings



Arrakis I/O Architecture



Arrakis: Storage stack

● Same idea can be applied to storage
● Direct access to storage controller for 

applications
● Application-specific persistent data 

structures instead of general purpose FS
● IPC interface to allow indirect access 

through VFS.



Arrakis Performance



IX vs Arrakis

● Do we need to protect the network stack 
from the application?
○ To what degree is the OS responsible for correct 

protocol implementation?
○ Possible problems: congestion control, others?
○ How does this differ from the cloud setting?
○ Would more hardware support help?



IX, Arrakis applicability

● Both are primarily targeted at data centers
● Are there other settings where they could be 

useful?
○ Mobile? Desktops?



Exokernel

● Interesting ideas for applications?
● VMMs vs Exokernel?
● What challenges prevent this from being the 

standard kernel structure today?
○ What are possible solutions to those challenges?



Specialization

● Both IX and Arrakis provide POSIX-
compatible interfaces that come with some 
performance cost
○ -> Inherent complexity vs performance trade-off


