
Reliable operating systems

Reliable operating systems

Can we make operating systems reliable and
secure?

 [Andy Tanenbaum, Jorrit Herder, Herbert Bos, 2006]

What makes operating
systems unreliable?

• They are huge

• They have poor fault isolation

What makes operating
systems unreliable?

• They are huge

• millions of lines of code

What makes operating
systems unreliable?

• They are huge

• millions of lines of code

• between 6 and 16 bugs per 1000 lines
of code

What makes operating
systems unreliable?

• They have poor fault isolation

• thousands of procedures linked
together as a single binary program

• can overwrite key kernel data-
structures

• if a virus infects even just one
procedure, it ca spread quickly to the
whole kernel

What can we do?

• Improve on legacy operating systems

• device drivers are the core of the
problem

• isolate them [Nooks, SOSP’03]

• synthesize them [Termite,
SOSP’09]

• Re-design the OS

• microkernel

Nooks

• conservative approach, maintains
monolithic kernel design

• protects the kernel from buggy device
drivers

Nooks: An architecture for reliable device
drivers

 [Mike Swift, Hank Levy, et. all, SOSP’03]

Nooks architecture

Each driver is wrapped in a layer of protective software
that monitors all interactions between the driver and

the kernel

Nooks

• Goals:

• protect the kernel against driver
failures

• recover automatically from driver
failures

• as few changes as possible to the
drivers and kernel

Nooks techniques

• Isolation

• Interposition

• Recovery

Nooks techniques

• Isolation

• lightweight kernel protection domain is a
module that

• executes in kernel mode

• is logically part of the kernel

• has read access to kernel structures

• has restricted write access to kernel
structures

Nooks techniques
• Interposition

• each driver class exports an interface

• wrappers for both exported and
imported functions

• some automatically generated
• 455 wrappers: 329 for the functions exported by the kernel

• when a driver attempts to write a
kernel object:

• first, copy object to driver’s
protection domain

Nooks techniques

• Recovery

• user-mode recovery agent (consults
configuration database)

• in many cases enough just to release
the resources held and restart the
driver

• shadow drivers are used to allow
applications to continue after the crash

Nooks limitations

• can catch 99% of fatal driver errors and
55% of the non fatal ones

• drivers can execute privileged instructions

• wrappers themselves can contain bugs

• drivers can re-enable access to all memory

Microkernels

• directly attack the core of the problem:
having the entire OS running as a huge
binary in kernel mode

Minix architecture

A tiny kernel runs in kernel mode with the rest of the
OS running as a collection of fully-isolated user-mode

server and driver processes

Another conservative
approach

• Termite-1, today’s talk

• Termite-1 generates bug-free drivers

• push-button synthesis

• Termite-2 [OSDI’14]

• user-guided synthesis

• “the first tool to combine the power of automation with
the flexibility of conventional development” - what
about SKETCH? [ASPLOS’06]

