Reliable operating systems



Reliable operating systems

Can we make operating systems reliable and

secure?
[Andy Tanenbaum, Jorrit Herder, Herbert Bos, 2006 ]



VVhat makes operating
systems unreliable?

® They are huge

® They have poor fault isolation



VVhat makes operating
systems unreliable?

® They are huge

® millions of lines of code



Number of lines of code in the Linux kernel

Linux kernel version

26.11 VEEEEEEE—— 6,624,076

26.12 EEEEEEEE———— 6,7 77,860

26.13 EEEEEEEE—— 5,988,800

26.14 NEEIEEEEEEEE———— 7 143,233

2.6.15 EE——— ] 290,070

26.16 TEEEEEE———— 7,480,062

26.17 N 7,588,014

26.186 T 7,752,846

26.19 TEEEEEEE————— 7,976,221

2620 N ———— 5,102,533

2621 VEEEE———— & 246,517

2622 T —— 8 499,410

262 TEEEEEEEEEEEE—— 8,566,606

2.6.24 T —— 8,850,683

2625 T —— §,232,592

2620 PR ———— 0,411,841

2.6.27 T ———— ) 630,074

2620 S —— 10,118,757

2.8.20 T ————— 10,934,554

2.6.30 e ————— 1 1,560,971

2.6.31 T ——— 1 { 970,124

2632

2633

2634

26.35

26.36

26.37

2.6.38 T ——— 14,211,814

2.6.39 T — 14,537,764
3.0 T —— 14,651,135
3.1 T —— 14,776,002
3.2 T ——— 1 5 004,006

Data source: Linux Foundation www.pingdom.com




VVhat makes operating
systems unreliable?

® They are huge
® millions of lines of code

® between 6 and |16 bugs per 1000 lines
of code



VVhat makes operating
systems unreliable?

® They have poor fault isolation

® thousands of procedures linked
together as a single binary program

® can overwrite key kernel data-
structures

® if a virus infects even just one

procedure, it ca spread quickly to the
whole kernel



What can we do!

® |Improve on legacy operating systems

® device drivers are the core of the
problem

® isolate them [Nooks, SOSP’03]

® synthesize them [Termite,
SOSP’09]

® Re-design the OS

® microkernel



Nooks

® conservative approach, maintains
monolithic kernel design

® protects the kernel from buggy device
drivers

Nooks: An architecture for reliable device
drivers

[Mike Swift, Hank Levy, et. all, SOSP’03]



User
mode

Kernel
mode

e

;

\

Nooks architecture

- = L

’ Flle " J Memory oy Sched-\‘.

\ system / \ mgmt / ‘e ullng R

\~—’ \~—

—_——
” \\

/ Process Y
\ mgmt R

-~ -

- -

Nooks isolation manage

Pnnter
dnver

=

- Wrapper

Stub

Each driver is wrapped in a layer of protective software
that monitors all interactions between the driver and

the kernel



Nooks

® Goals:

® protect the kernel against driver
failures

® recover automatically from driver
failures

® as few changes as possible to the
drivers and kernel



Nooks techniques

® |solation
® |nterposition

® Recovery



Nooks techniques

® |solation

® |ightweight kernel protection domain is a
module that

® executes in kernel mode
® is logically part of the kernel
® has read access to kernel structures

® has restricted write access to kernel
structures



Nooks techniques

® |nterposition
® cach driver class exports an interface

® wrappers for both exported and
imported functions

® some automatically generated
® 455 wrappers: 329 for the functions exported by the kernel

® when a driver attempts to write a
kernel object:

® first, copy object to driver’s
protection domain



Nooks techniques

® Recovery

® user-mode recovery agent (consults
configuration database)

® in many cases enough just to release

the resources held and restart the
driver

® shadow drivers are used to allow
applications to continue after the crash



Nooks limitations

can catch 99% of fatal driver errors and
55% of the non fatal ones

drivers can execute privileged instructions
wrappers themselves can contain bugs

drivers can re-enable access to all memory



Microkernels

® directly attack the core of the problem:
having the entire OS running as a huge
binary in kernel mode



Minix architecture

Process

User < K

mode @ @ @ @ Servers
) () @) ) - o) |omen

\

o~

Kernel - Microkernel handles interrupts,
mode processes, scheduling, IPC

—

A tiny kernel runs in kernel mode with the rest of the
OS running as a collection of fully-isolated user-mode
server and driver processes




Another conservative
approach

® Termite-|, today’s talk

® Termite-| generates bug-free drivers
® push-button synthesis

® TJermite-2 [OSDI’ 4]
® user-guided synthesis

® “‘the first tool to combine the power of automation with
the flexibility of conventional development™ - what

about SKETCH? [ASPLOS’06]



