Dealing with Concurrency and Failures
atomic action
- not-divisible, “clean state”
- (processor instructions, syscalls)
Concurrency: might introduce unwanted traces
Failures: might introduce unwanted intermediary state
High level atomic actions

Do it yourself: locks, spin locks, atomic set, log

Hard: tons of research on identifying concurrency bugs:
MUVI (SOSP’07), ConSeq(ASPLOS’11)
Transactions

- Operating system transactions
 - TxOS (SOSP’09)
- Transactional memory
 - transactions on app data structures
 - a bunch of references in TxOS paper
- Sinfonia (SOSP’07)
- Storage/database transactions
 - consistent application state
TAPIR

• In-memory, distributed, fault-tolerant key-value store

• supports distributed ACID[F] transactions
The idea

Expensive (latency/throughput) guarantees

RSM

CC 2PC

Replication

ACID[F] transactions

Cheaper guarantees

TAPIR

IR
Architecture

- Optimistic timestamp ordering
- Multi-version storage engine
- Fine-grained conflict detection