Model Checking

Aleksei Sholokhov, Yuan-Mao Chueh

Agenda

Formal reasoning:

1. Deductive Reasoning (like writing math proof)
2. Model checking (finite; run automatically)

Model Checking:

1. Language used: Temporal logic: ex: CTL* (which contains CTL, LTL) [Alex]
2. Explicit-state -> state explosion problem [Alex]
a. Partial Order Reduction (X)

b. BDD-based symbolic model checking (Yuan-Mao)
c. SAT/SMT based model checking (X)

d. Abstraction (<- our required reading) (Yuan-Mao)
3. Applications (<- our optional readings) [Alex] 2-3 pages

Model-Checking Overview

1. Property Specification Language
o Typically expressed based on a
temporal logic
2. Model Specification Language
o Encoding the system (program,
hardware) as a finite-state transition
system
3. Verification Procedure

o Algorithms that does an exhaustive
search of the model state space

o Provides a counterexample if it finds a

state that breaks the specification

Preprocessor

t

—
B

Model Checker

Specification

Program or Circuit

‘

True or Counterexamples

Fig.4: A Model Checker with Counterexamples

LTL — Linear-time Temporal Logic

Definition 3 (LTL). Linear temporal logic formulas are of the form A, with
Y given by the grammar:

Ypu=p| W |YVy | XY |yp Uy
where p € AP.

e Temporal Operators: Xo | Go | Fo | Re | Wo | Mo

o X ¢@— Next: ¢ has to hold at the next state (this operator is sometimes noted N instead of X).

G ¢ — Globally: ¢ has to hold on the entire subsequent path.

F ¢ — Finally: ¢ eventually has to hold (somewhere on the subsequent path).

w W @ — Weak until: ¢ has to hold at least until ¢; if ¢ never becomes true, ¢ must remain true forever.

w U @ — Until: g has to hold at least until ¢ becomes true, which must hold at the current or a future position.

¥ R ¢ - Release: ¢ has to be true until and including the point where first becomes true; if ¢ never becomes

true, ¢ must remain true forever

o M g - Strong release: ¢ has to be true until and including the point where y first becomes true, which must
hold at the current or a future position

o All formulas have an implicit A in front

o O O O O

Computation Tree Logic (CTL) — branching-time logic

Definition 4 (CTL). Computation tree logic formulas are inductively defined
as follows:

du=pl|o|odVe| Ay | Eyp (state formulas)
YV :=X¢p|Fop|Gop|opU¢ (path formulas)

where p € AP.

e Each basic temporal (X, F, G, U) operator must be immediately preceded by a path quantifier (A or E)
e Quantifiers over paths

O

O

A © — All: @ has to hold on all paths starting from the current state.
E ® — Exists: there exists at least one path starting from the current state where ® holds.

e Path-specific quantifiers

O

O
O
O

X @ — Next: ¢ has to hold at the next state (this operator is sometimes noted N instead of X).

G ¢ — Globally: ¢ has to hold on the entire subsequent path.

F ¢ — Finally: ¢ eventually has to hold (somewhere on the subsequent path).

¢ U w — Until: ¢ has to hold at least until at some position g holds. This implies that ¢ will be verified in the
future.

@ W @ — Weak until: ¢ has to hold until ¢ holds. The W operator is sometimes called "unless".

CTL* — combines state- and path-specific qualifiers

Definition 2 (CTL*). The syntax of CTL" is given by the grammar:

du=p|0|oVe|AY | EY (state formulas)
Ypu=¢ || pVyY | XY |Fy |Gy |y Uy (path formulas)

where p € AP.

o (O is satisfied with respect to the state: s [= ¢
e W is satisfied with respect to the path: « |[= @

e ACTL*— CTL* where the A (forall) qualifier is excluded and all formulas are in NNF.
o Because of the latter, we can not define E¢ = “A-¢. Thus ACTL* C CTL*

LTL vs CTLvs CTL* vs ACTL*

CTL* AG(EF(restart))
A(G(req = > F ack))

State Explosion Problem

e Each n-bit number has 2”n states
e Kk branch conditions give 2*k states
e m asynchronous processes with n states each have m”n states

Superposition of those quickly yields unmanageable number of states

Model Checking

e System is modeled as transition system

o M=(S,-> L)with a set of atoms (p, q, r, ... : either True or False)
m S: States
m ->: Transitions (rule: transitions are always possible) (paths are infinite)
m L: which atoms are true in which states

e Problem: Is “M, s F ¢@” true?
e |nput:

o ModelM=(S,->1L) S0
o Formula ¢ in a temporal logic

q,r

Model Checking Algorithm (CTL)

e Strategy: Starting from the smallest subformulas and working outward
towards ¢, label the states of M with the subformulas of ¢ that are satisfied
there.

e Follow the following rules until the whole ¢ has been considered:

e |: then no states are labelled with L.
e p: then label s with p if p € L(s).
e 1)) Ao: label s with ¢y A)y if s is already labelled both with 1, and with 5.
e —fp: label s with), if s is not already labelled with ;.
o AFy:
— If any state s is labelled with v, label it with AF /.
— Repeat: label any state with AF ¢, if all successor states are labelled with
AF 1)1, until there is no change. This step is illustrated in Figure 3.24.
9 E[L')l U 'l_,‘i’2]:
— If any state s is labelled with 1)y, label it with E[y; U 9,).
— Repeat: label any state with E[yp; U 1)y if it is labelled with v, and at least
one of its successors is labelled with E[t; U 15|, until there is no change. This
step is illustrated in Figure 3.25.
e EX4);: label any state with EX 1)y if one of its successors is labelled with ;.

Example of CTL algorithm

Q:Is “E[W1 U W27
true in M?

>
Q/Q/Q
-

O

Example of CTL algorithm

Q:Is “E[W1 U W27
true in M?

>
@/@/O
yce

O

Example of CTL algorithm

Q:Is “E[W1 U W27
true in M?

>
@/@/@
yce

O

Example of CTL algorithm

Q:Is “E[W1 U W27
true in M?

)

 (w
/@ E [W1 U W2
yce

O

Example of CTL algorithm

Q:Is “E[W1 U W27
true in M?

@ E [W1 U W2
— U W2]

Example of CTL algorithm

Q:Is “E[W1 U W27
true in M?

A: There are 3 states in @
which “E [W1 U W2]" is — E [P1 U W2]
true. @

— U W2]

Model Checking Algorithm (LTL)

e Step 1: Construct an automaton A~ that accepts formula —¢

e Step 2: Combine A—¢@ and model M into a new automaton.

e Step 3: Check if the new automaton accepts any path. If no, M, s F ¢; if yes,
the path is a counterexample.

Our model M:

Example of LTL algorithm

Our model M:

Ways to overcome State Explosion Problem

Abstraction (<- our required reading)
Partial order reduction

BDD-based symbolic model checking
Bounded model checking with SAT / SMT

Abstraction

e Approximation

o M approximates M

o Use M’ to deduce properties of M (1) congruence modulo an integer, for dealing with arithmetic operations;
(2) single bit abstractions, for dealing with bitwise logical operations;
/ (3) product abstractions, for combining abstractions such as the above; and

(4) symbolic abstractions, which is a powerful type of abstraction that allows
us to verify an entire class of formulas simultaneously.

./R' () or

M-min’

Abstraction

e How to produce M-min’

o Impractical to construct directly from M explicitly (what if b is 64-bit)
o Solution: Compute it directly from the program text using relational semantics + approximation

tricks
(i pi=0
1: while b # 0 Symbolic Representation of the program:
p:=p®Plsb(b)
e s | (PC=0Ap' =0ADb =bAPC =1)
endwhile VIPC=1Ab=0Ap =p Ab =b APC = 2)
2: end VIPC=1Ab+0Ap =p@lsh(b) Ab =b>1APC =1)

VIPC=2Ap =pAb =bAPC =2).

Abstraction

e How to produce M-min’ from program text
o Step 1. Derive formula / for initial condition and formula R for the transition relation using
relational semantic. | and R can represent M.
o Step 2. Try to compute I-min’ and R-min’ (which represent M-min’) directly from / and R.
o Step 3. Step 2 is too difficult. Use approximation tricks to derive I-app’ and R-app’ for M-app’
instead. M-app’ somehow similar to M-min’.

e Result: we get M-app’ instead of M-min’
The tricks: How similar:
(1) If P is a primitive relation, then S(P(x,,..., x,,)) =[Pl %,,..., £,) and

2R o - —) Y P& 50w 4 §<\"m)

@) T by A by) = Hby) A Ay, 1.M-min’ transition -> M-app

transition

(3) TPy V ¢y) = T(dy) Vv T by).

(4) QC/'(‘ilc(p)dfvw((;b)f e 2£l\¢-min’ initial state -> M-app’ initial
state

(6) I(Fx) = AXT().

Abstraction

e Now we have M-app’. The paper shows M-app’ also approximates M.
e Main result in the paper:

COROLLARY 5.7. Assume M =, M, and let ¢ be a YCTL* formula describ-
ing M. Then M = ¢ implies M = ().

Definition 5.4. % is the mapping from formulas describing M to formulas

describing M that is defined as follows:

(1) #(true) = true. #(false) = false. #(6; =d,) is Vi{v, = d,|h(d) = d).
#(0; # d;) = €0, = d)).

(2) If ¢ and ¢ are state formulas, then #(d A) = F(d) A &(¥), and
F(p Vv) =2 (p) vV).

(3) If ¢ is a path formula, then Z(V(¢$)) = V(Z(¢)), and #(3(H)) = IEF(H)).

(4) TIf ¢ is a path formula that is also a state formula, then #(¢) is given by
the above rules.

(5) If ¢ and ¢ are path formulas, then #(¢ A) = (d) A F(&), and
E(pV) =F(d) Vv E().

(8) If ¢ and ¢ are path formulas, then
(@) #X¢) = X&),

(b) #(pUy) = #(H)UF(y), and
(c) Z(pVip) = F(HIVE ().

Binary Decision Diagram

e Binary Decision Tree - - - some reduction rules - - > Reduced OBDD
e Characteristics of Reduced OBDD

(@)

(@)

(@)

Compact representation of boolean functions

Canonical: all semantically-equivalent boolean func have exactly the same BDD structures
Common operations (+, *,) have reasonable complexities (not exponential). The complexities
depends on the size of OBDD.

Size of OBDD critically relies on the variable order. Worst case can be exponential. In some
cases we can have only worst case (ex: integer multiplication function).

How is BDD useful?

e State space and transition relations in model M can be represented as
Reduced OBDD.

x] o T TH|—

0 0 0 0|1

0 0 0 10

. 0 0 1 01

0 0 1 10

S0 @ .@ 0 1 0 01
0 1 0 10

0 1 1 0|0

0o 1 1 110

1 0 0 0]0

1 0 0 1]1

1 0 1 00

s2 1 0 1 1]0

1 1 0 0]0

States: Transitions: i i (1’ (1) 8
$1T2+T1’L‘2+T11’_2 1 1 1 110

def _ Ly - B af ! o - =
=712 To+T1-F2-27Tg+T1:T2-T1 %5+ T1 - 22T+ Ty

Application 1: Model Checking of Linux TCP (2004)

e 50k lines of code
e Size of the system state — 250 KBs (~2*2048000 states)

o The observable universe has ~27273 atoms

CMC System:
e Runs two Linux Kernels in parallel (two TCP peers)
e Containerised TCP code via an interface
e Compresses states efficiently to deal with state explosion
e Attempts to visit as many states as possible before running out of resources
e Checks for memory leaks, resource leaks, and protocol conformance

Results: Found 4 bugs in implementation

Application 2: Network Configuration Verification

Network Design Coverage

Most of the network outages happen due to misconfiguration
We need tools that could verify all data planes for a given configuration

Data Plane Control Plane
A Analysis Analysis
HSA :
Veriflow Baff|sh Minesweeper
@
Ping ERA
Traceroute ®
ARC
@
Bagpipe
@
| | L
Single Single Controllable Multiple All

packet data plane dataplane dataplanes data planes

Data Plane Coverage

Minesweeper

Reasoning about networks as graphs, not as paths

Combinatorial search (formal logic) instead of message construction
BGP as a stable path problem

Multiple optimizations to scale to size of real networks

(b)

Stable Path Problem

Graph (V, E) with a special node 0 that every other node is trying to reach.
Paths to O from vk: P = (vk, vk-1, ..., 0)

Path value L(P)

Stable path assignment s(v) = P if P maximizes the value

A stable path problem is solvable if every node can have a stable assignment

10

20
130 210
:l 430 “‘é!
420
() &)

Results

e Created formal system F that embeds network configuration and constraints

e Type of constraints supported:
o Reachability and isolation
Waypoints, path length, equal paths, disjoint paths
|dentifying forwarding loops and black holes
Load balancing, fault tolerance,
Full and partial equivalence
Many more

o O O O O

e Testing:
o Applied to 152 real network, found 120 violations of must-hold properties
o Including one that possesses significant security threat

