
Model Checking
Aleksei Sholokhov, Yuan-Mao Chueh

Agenda
Formal reasoning:

1. Deductive Reasoning (like writing math proof)
2. Model checking (finite; run automatically)

Model Checking:

1. Language used: Temporal logic: ex: CTL* (which contains CTL, LTL) [Alex]
2. Explicit-state -> state explosion problem [Alex]

a. Partial Order Reduction (X)
b. BDD-based symbolic model checking (Yuan-Mao)
c. SAT/SMT based model checking (X)
d. Abstraction (<- our required reading) (Yuan-Mao)

3. Applications (<- our optional readings) [Alex] 2-3 pages

Model-Checking Overview

1. Property Specification Language
○ Typically expressed based on a

temporal logic
2. Model Specification Language

○ Encoding the system (program,
hardware) as a finite-state transition
system

3. Verification Procedure
○ Algorithms that does an exhaustive

search of the model state space
○ Provides a counterexample if it finds a

state that breaks the specification

LTL – Linear-time Temporal Logic

● Temporal Operators: Xφ | Gφ | Fφ | Rφ | Wφ | Mφ
○ X φ – Next: φ has to hold at the next state (this operator is sometimes noted N instead of X).
○ G φ – Globally: φ has to hold on the entire subsequent path.
○ F φ – Finally: φ eventually has to hold (somewhere on the subsequent path).
○ ψ W φ – Weak until: ψ has to hold at least until φ; if φ never becomes true, ψ must remain true forever.
○ ψ U φ – Until: ψ has to hold at least until φ becomes true, which must hold at the current or a future position.
○ ψ R φ - Release: φ has to be true until and including the point where ψ first becomes true; if ψ never becomes

true, φ must remain true forever
○ ψ M φ - Strong release: φ has to be true until and including the point where ψ first becomes true, which must

hold at the current or a future position

● All formulas have an implicit A in front

Computation Tree Logic (CTL) – branching-time logic

● Each basic temporal (X, F, G, U) operator must be immediately preceded by a path quantifier (A or E)
● Quantifiers over paths

○ A Φ – All: Φ has to hold on all paths starting from the current state.
○ E Φ – Exists: there exists at least one path starting from the current state where Φ holds.

● Path-specific quantifiers
○ X φ – Next: φ has to hold at the next state (this operator is sometimes noted N instead of X).
○ G φ – Globally: φ has to hold on the entire subsequent path.
○ F φ – Finally: φ eventually has to hold (somewhere on the subsequent path).
○ φ U ψ – Until: φ has to hold at least until at some position ψ holds. This implies that ψ will be verified in the

future.
○ φ W ψ – Weak until: φ has to hold until ψ holds. The W operator is sometimes called "unless".

CTL* – combines state- and path-specific qualifiers

● φ is satisfied with respect to the state: s |= φ
● Ψ is satisfied with respect to the path: 𝛑 |= ψ

● ACTL* – CTL* where the A (forall) qualifier is excluded and all formulas are in NNF.
○ Because of the latter, we can not define Eφ = ¬A¬φ. Thus ACTL* ⊂ CTL*

LTL vs CTL vs CTL* vs ACTL*

LTL

CTL

AG(EF(restart))

ACTL*
A(G(req = > F ack))

ACTL

CTL*

State Explosion Problem

● Each n-bit number has 2^n states
● k branch conditions give 2^k states
● m asynchronous processes with n states each have m^n states

Superposition of those quickly yields unmanageable number of states

Model Checking

● System is modeled as transition system
○ M = (S, ->, L) with a set of atoms (p, q, r, … : either True or False)

■ S: States
■ ->: Transitions (rule: transitions are always possible) (paths are infinite)
■ L: which atoms are true in which states

● Problem: Is “M, s ⊨ φ” true?
● Input:

○ Model M = (S, ->, L)
○ Formula φ in a temporal logic

Model Checking Algorithm (CTL)

● Strategy: Starting from the smallest subformulas and working outward
towards φ, label the states of M with the subformulas of φ that are satisfied
there.

● Follow the following rules until the whole φ has been considered:

Example of CTL algorithm

Q: Is “E [Ψ1 U Ψ2]”
true in M?

Example of CTL algorithm

Ψ1

Ψ1

Ψ1

Q: Is “E [Ψ1 U Ψ2]”
true in M?

Example of CTL algorithm

Ψ1

Ψ1

Ψ2

Ψ1

Q: Is “E [Ψ1 U Ψ2]”
true in M?

Example of CTL algorithm

Ψ1

Ψ1

Ψ2,

Ψ1

Q: Is “E [Ψ1 U Ψ2]”
true in M?

E [Ψ1 U Ψ2]

Example of CTL algorithm

Ψ1

Ψ1,

Ψ2,

Ψ1

Q: Is “E [Ψ1 U Ψ2]”
true in M?

E [Ψ1 U Ψ2]

E [Ψ1 U Ψ2]

Example of CTL algorithm

Ψ1,

Ψ1,

Ψ2,

Ψ1

Q: Is “E [Ψ1 U Ψ2]”
true in M?

A: There are 3 states in
which “E [Ψ1 U Ψ2]” is
true. E [Ψ1 U Ψ2]

E [Ψ1 U Ψ2]

E [Ψ1 U Ψ2]

Model Checking Algorithm (LTL)

● Step 1: Construct an automaton A¬φ that accepts formula ¬φ
● Step 2: Combine A¬φ and model M into a new automaton.
● Step 3: Check if the new automaton accepts any path. If no, M, s ⊨ φ; if yes,

the path is a counterexample.

Our model M:

Example of LTL algorithm

+

Step 1 Step 2

Step 3

Our model M:

Ways to overcome State Explosion Problem

● Abstraction (<- our required reading)
● Partial order reduction
● BDD-based symbolic model checking
● Bounded model checking with SAT / SMT

Abstraction

● Approximation
○ M’ approximates M
○ Use M’ to deduce properties of M

M
M’

I

R

I’

R’

implies

()
M-min’

h

Abstraction

● How to produce M-min’
○ Impractical to construct directly from M explicitly (what if b is 64-bit)
○ Solution: Compute it directly from the program text using relational semantics + approximation

tricks

Symbolic Representation of the program:

Abstraction

● How to produce M-min’ from program text
○ Step 1. Derive formula I for initial condition and formula R for the transition relation using

relational semantic. I and R can represent M.
○ Step 2. Try to compute I-min’ and R-min’ (which represent M-min’) directly from I and R.
○ Step 3. Step 2 is too difficult. Use approximation tricks to derive I-app’ and R-app’ for M-app’

instead. M-app’ somehow similar to M-min’.
● Result: we get M-app’ instead of M-min’

The tricks: How similar:

1.M-min’ transition -> M-app’
transition
2.M-min’ initial state -> M-app’ initial
state

Abstraction

● Now we have M-app’. The paper shows M-app’ also approximates M.
● Main result in the paper:

Binary Decision Diagram

● Binary Decision Tree - - - some reduction rules - - > Reduced OBDD
● Characteristics of Reduced OBDD

○ Compact representation of boolean functions
○ Canonical: all semantically-equivalent boolean func have exactly the same BDD structures
○ Common operations (+, *, ^) have reasonable complexities (not exponential). The complexities

depends on the size of OBDD.
○ Size of OBDD critically relies on the variable order. Worst case can be exponential. In some

cases we can have only worst case (ex: integer multiplication function).

How is BDD useful?

● State space and transition relations in model M can be represented as
Reduced OBDD.

States: Transitions:

Application 1: Model Checking of Linux TCP (2004)

● 50k lines of code
● Size of the system state – 250 KBs (~2^2048000 states)

○ The observable universe has ~2^273 atoms

CMC System:

● Runs two Linux Kernels in parallel (two TCP peers)
● Containerised TCP code via an interface
● Compresses states efficiently to deal with state explosion
● Attempts to visit as many states as possible before running out of resources
● Checks for memory leaks, resource leaks, and protocol conformance

Results: Found 4 bugs in implementation

Application 2: Network Configuration Verification

● Most of the network outages happen due to misconfiguration
● We need tools that could verify all data planes for a given configuration

Minesweeper

● Reasoning about networks as graphs, not as paths
● Combinatorial search (formal logic) instead of message construction
● BGP as a stable path problem
● Multiple optimizations to scale to size of real networks

Stable Path Problem

● Graph (V, E) with a special node 0 that every other node is trying to reach.
● Paths to 0 from vk: P = (vk, vk-1, …, 0)
● Path value L(P)
● Stable path assignment s(v) = P if P maximizes the value
● A stable path problem is solvable if every node can have a stable assignment

Results

● Created formal system F that embeds network configuration and constraints
● Type of constraints supported:

○ Reachability and isolation
○ Waypoints, path length, equal paths, disjoint paths
○ Identifying forwarding loops and black holes
○ Load balancing, fault tolerance,
○ Full and partial equivalence
○ Many more

● Testing:
○ Applied to 152 real network, found 120 violations of must-hold properties
○ Including one that possesses significant security threat

