Model Checking

Aleksei Sholokhov, Yuan-Mao Chueh

Agenda

Formal reasoning:

- 1. Deductive Reasoning (like writing math proof)
- 2. Model checking (finite; run automatically)

Model Checking:

- 1. Language used: Temporal logic: ex: CTL* (which contains CTL, LTL) [Alex]
- 2. Explicit-state -> state explosion problem [Alex]
 - a. Partial Order Reduction (X)
 - b. BDD-based symbolic model checking (Yuan-Mao)
 - c. SAT/SMT based model checking (X)
 - d. Abstraction (<- our required reading) (Yuan-Mao)
- 3. Applications (<- our optional readings) [Alex] 2-3 pages

Model-Checking Overview

- 1. Property Specification Language
 - Typically expressed based on a temporal logic
- 2. Model Specification Language
 - Encoding the system (program, hardware) as a finite-state transition system
- 3. Verification Procedure
 - Algorithms that does an exhaustive search of the model state space
 - Provides a counterexample if it finds a state that breaks the specification

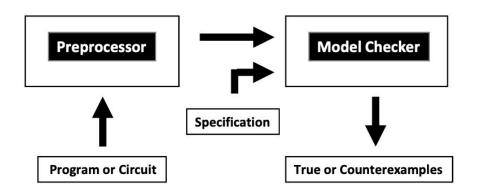


Fig. 4: A Model Checker with Counterexamples

LTL – Linear-time Temporal Logic

Definition 3 (LTL). Linear temporal logic formulas are of the form $\mathbf{A}\psi$, with ψ given by the grammar:

$$\psi ::= p \mid \neg \psi \mid \psi \lor \psi \mid \mathbf{X} \psi \mid \psi \mathbf{U} \psi$$

where $p \in AP$.

- Temporal Operators: Xφ | Gφ | Fφ | Rφ | Wφ | Mφ
 - **X** φ Next: φ has to hold at the next state (this operator is sometimes noted **N** instead of **X**).
 - **G** φ **G**lobally: φ has to hold on the entire subsequent path.
 - **F** φ **F**inally: φ eventually has to hold (somewhere on the subsequent path).
 - $\psi \mathbf{W} \varphi \mathbf{W}$ eak until: ψ has to hold *at least* until φ ; if φ never becomes true, ψ must remain true forever.
 - $\psi \mathbf{U} \varphi \mathbf{U}$ ntil: ψ has to hold *at least* until φ becomes true, which must hold at the current or a future position.
 - $\psi \mathbf{R} \varphi$ Release: φ has to be true until and including the point where ψ first becomes true; if ψ never becomes true, φ must remain true forever
 - $\psi \mathbf{M} \varphi$ Strong release: φ has to be true until and including the point where ψ first becomes true, which must hold at the current or a future position
- All formulas have an implicit A in front

Computation Tree Logic (CTL) – branching-time logic

Definition 4 (CTL). Computation tree logic formulas are inductively defined as follows:

 $\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \mathbf{A}\psi \mid \mathbf{E}\psi \text{ (state formulas)} \\ \psi ::= \mathbf{X}\phi \mid \mathbf{F}\phi \mid \mathbf{G}\phi \mid \phi \mathbf{U}\phi \quad \text{(path formulas)}$

where $p \in AP$.

- Each basic temporal (X, F, G, U) operator must be immediately preceded by a path quantifier (A or E)
- Quantifiers over paths
 - $\mathbf{A} \Phi \mathbf{A}$ II: Φ has to hold on all paths starting from the current state.
 - **E** Φ **E**xists: there exists at least one path starting from the current state where Φ holds.
- Path-specific quantifiers
 - **X** φ Next: φ has to hold at the next state (this operator is sometimes noted **N** instead of **X**).
 - **G** φ **G**lobally: φ has to hold on the entire subsequent path.
 - **F** φ **F**inally: φ eventually has to hold (somewhere on the subsequent path).
 - $\varphi U \psi U$ ntil: φ has to hold *at least* until at some position ψ holds. This implies that ψ will be verified in the future.
 - $\varphi \mathbf{W} \psi \mathbf{W}$ eak until: φ has to hold until ψ holds. The **W** operator is sometimes called "unless".

CTL* – combines state- and path-specific qualifiers

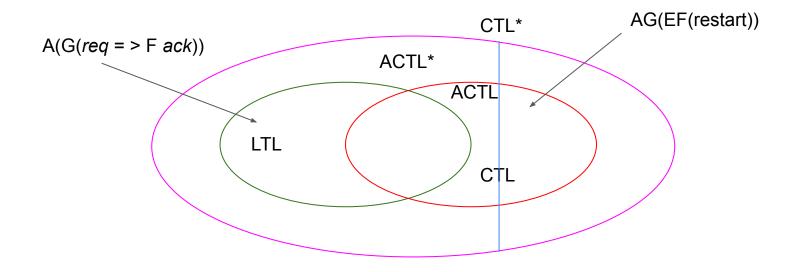
Definition 2 (CTL*). The syntax of CTL^* is given by the grammar:

$$\begin{array}{ll} \phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \mathbf{A}\psi \mid \mathbf{E}\psi & (\text{state formulas}) \\ \psi ::= \phi \mid \neg \psi \mid \psi \lor \psi \mid \mathbf{X}\psi \mid \mathbf{F}\psi \mid \mathbf{G}\psi \mid \psi \mathbf{U}\psi & (\text{path formulas}) \\ where \ p \in AP. \end{array}$$

- ϕ is satisfied with respect to the state: $s \models \phi$
- Ψ is satisfied with respect to the path: $\pi \models \psi$

- ACTL* CTL* where the A (forall) qualifier is excluded and all formulas are in NNF.
 - Because of the latter, we can not define $E\phi = \neg A \neg \phi$. Thus $ACTL^* \subset CTL^*$

LTL vs CTL vs CTL* vs ACTL*



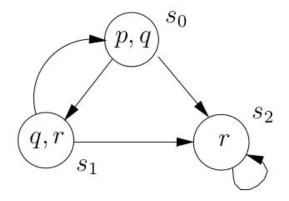
State Explosion Problem

- Each n-bit number has 2ⁿ states
- k branch conditions give 2^k states
- m asynchronous processes with n states each have mⁿ states

Superposition of those quickly yields unmanageable number of states

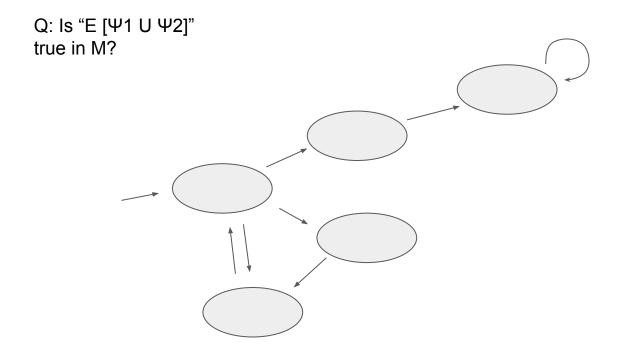
Model Checking

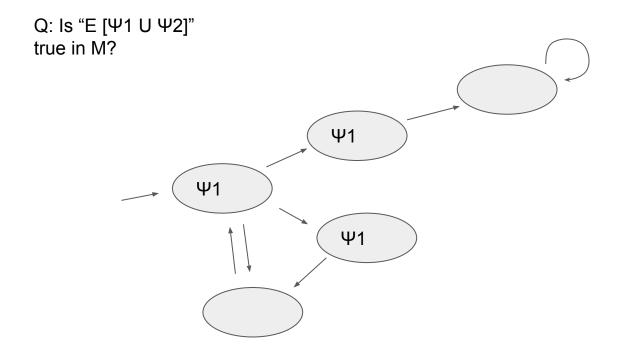
- System is modeled as transition system
 - M = (S, ->, L) with a set of atoms (p, q, r, ... : either True or False)
 - S: States
 - ->: Transitions (rule: transitions are always possible) (paths are infinite)
 - L: which atoms are true in which states
- Problem: Is "M, $s \models \phi$ " true?
- Input:
 - Model M = (S, ->, L)
 - $\circ \quad \mbox{Formula } \phi \mbox{ in a temporal logic}$

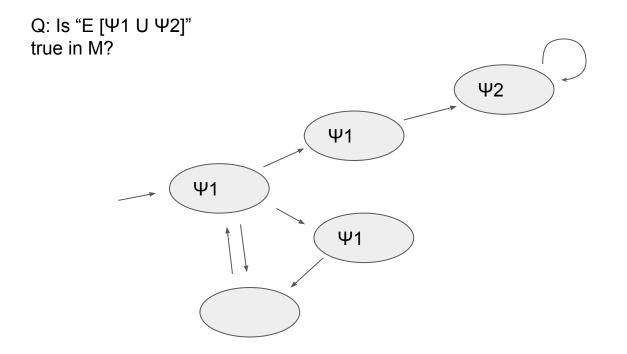


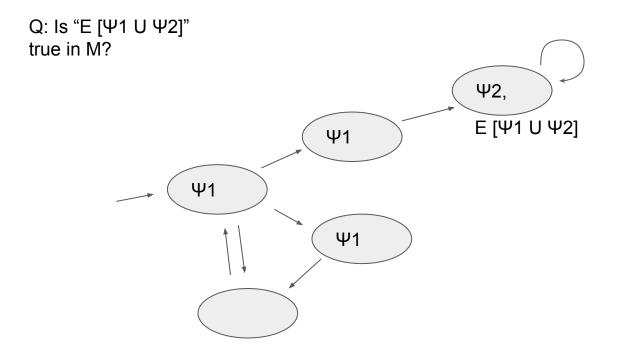
Model Checking Algorithm (CTL)

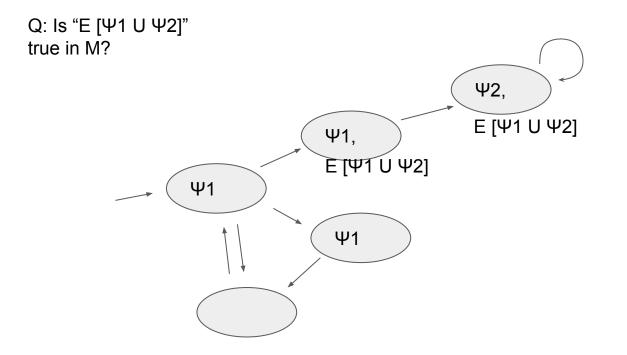
- Strategy: Starting from the smallest subformulas and working outward towards φ, label the states of M with the subformulas of φ that are satisfied there.
- Follow the following rules until the whole φ has been considered:
 - \perp : then no states are labelled with \perp .
 - p: then label s with p if $p \in L(s)$.
 - $\psi_1 \wedge \psi_2$: label s with $\psi_1 \wedge \psi_2$ if s is already labelled both with ψ_1 and with ψ_2 .
 - $\neg \psi_1$: label s with $\neg \psi_1$ if s is not already labelled with ψ_1 .
 - AF ψ_1 :
 - If any state s is labelled with ψ_1 , label it with AF ψ_1 .
 - Repeat: label any state with AF ψ_1 if all successor states are labelled with AF ψ_1 , until there is no change. This step is illustrated in Figure 3.24.
 - $E[\psi_1 \cup \psi_2]$:
 - If any state s is labelled with $\psi_2,$ label it with $\mathrm{E}[\psi_1 \to \psi_2].$
 - Repeat: label any state with $E[\psi_1 \cup \psi_2]$ if it is labelled with ψ_1 and at least one of its successors is labelled with $E[\psi_1 \cup \psi_2]$, until there is no change. This step is illustrated in Figure 3.25.
 - EX ψ_1 : label any state with EX ψ_1 if one of its successors is labelled with ψ_1 .

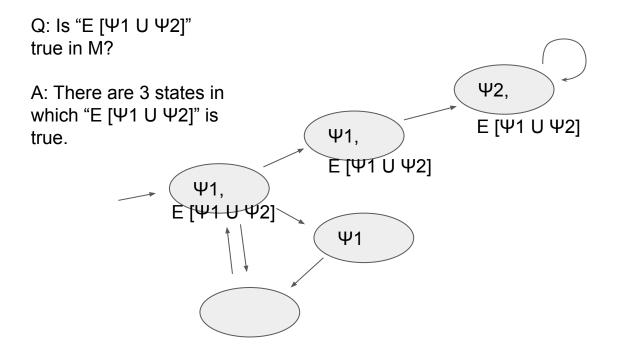






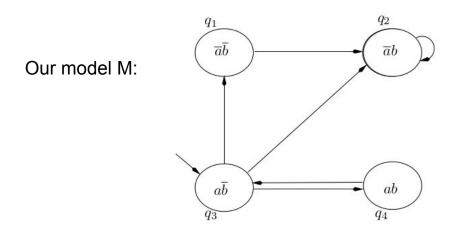




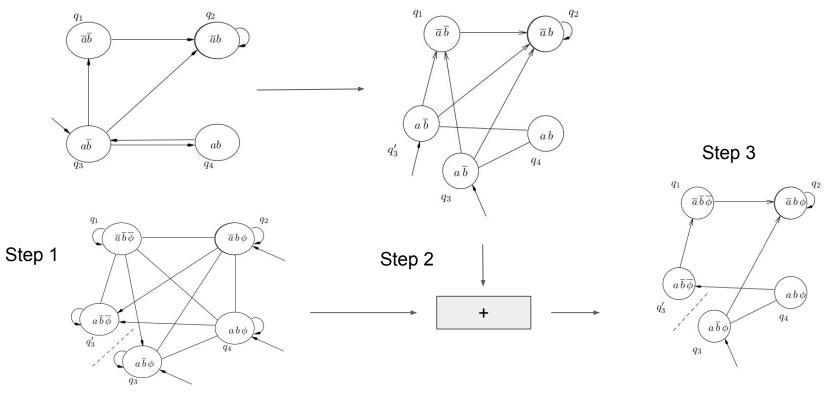


Model Checking Algorithm (LTL)

- Step 1: Construct an automaton $A \neg \phi$ that accepts formula $\neg \phi$
- Step 2: Combine $A \neg \phi$ and model M into a new automaton.
- Step 3: Check if the new automaton accepts any path. If no, M, s ⊨ φ; if yes, the path is a counterexample.



Our model M:

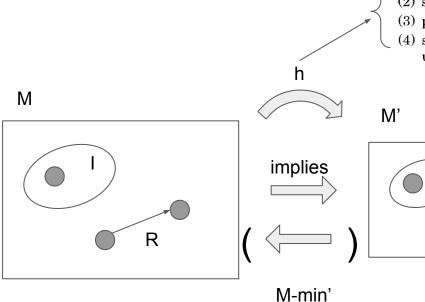


Ways to overcome State Explosion Problem

- Abstraction (<- our required reading)
- Partial order reduction
- BDD-based symbolic model checking
- Bounded model checking with SAT / SMT

• Approximation

- M' approximates M
- Use M' to deduce properties of M



(1) congruence modulo an integer, for dealing with arithmetic operations;
 (2) single bit abstractions, for dealing with bitwise logical operations;
 (3) product abstractions, for combining abstractions such as the above; and
 (4) symbolic abstractions, which is a powerful type of abstraction that allows us to verify an entire class of formulas simultaneously.

R'

- How to produce M-min'
 - Impractical to construct directly from M explicitly (what if b is 64-bit)
 - Solution: Compute it directly from the program text using relational semantics + approximation tricks

- How to produce M-min' from program text
 - Step 1. Derive formula *I* for initial condition and formula *R* for the transition relation using *relational semantic*. *I* and *R* can represent M.
 - Step 2. Try to compute *I-min*' and *R-min*' (which represent M-min') directly from *I* and *R*.
 - Step 3. Step 2 is too difficult. Use approximation tricks to derive I-app' and R-app' for M-app' instead. M-app' somehow similar to M-min'.
- Result: we get M-app' instead of M-min'

The tricks:

```
How similar:
```

If P is a primitive relation, then 𝔅(P(𝑥₁,...,𝑥_m)) = [P](𝑥̂₁,...,𝑥̂_m) and 𝔅(¬P(𝑥₁,...,𝑥_m)) = [¬P](𝑥̂₁,...,𝑥̂_m).
 𝔅(¬P(𝑥₁,...,𝑥_m)) = [¬P](𝑥̂₁,...,𝑥̂_m).
 𝔅(𝔅₁ ∧ 𝔅₂) = 𝔅(𝔅₁) ∧ 𝔅(𝔅₂).
 𝔅(𝔅₁ ∨ 𝔅₂) = 𝔅(𝔅₁) ∧ 𝔅(𝔅₂).
 𝔅(𝔅₁ ∨ 𝔅₂) = 𝔅(𝔅₁) ∨ 𝔅(𝔅₂).
 𝔅(𝔅₁ ∨ 𝔅₂) = 𝔅𝔅(𝔅₁).
 𝔅(𝔅₁ × 𝔅₂) = 𝔅𝔅(𝔅₁).

1.M-min' transition -> M-app' transition
2.M-min' initial state -> M-app' initial state

- Now we have M-app'. The paper shows M-app' also approximates M.
- Main result in the paper:

COROLLARY 5.7. Assume $M \sqsubseteq_h \hat{M}$, and let ϕ be a $\forall CTL^*$ formula describing \hat{M} . Then $\hat{M} \vDash \phi$ implies $M \vDash \mathscr{C}(\phi)$.

Definition 5.4. \mathscr{C} is the mapping from formulas describing \hat{M} to formulas describing M that is defined as follows:

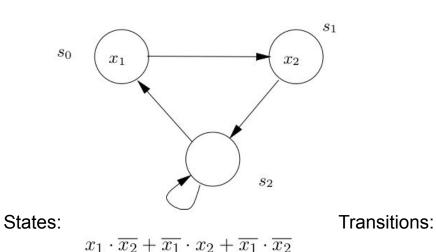
- (1) $\mathscr{C}(true) = true. \ \mathscr{C}(false) = false. \ \mathscr{C}(\hat{v}_i = \hat{d}_i) \text{ is } \forall \{v_i = d_i | h_i(d_i) = \hat{d}_i\}.$ $\mathscr{C}(\hat{v}_i \neq \hat{d}_i) = \neg \mathscr{C}(\hat{v}_i = \hat{d}_i).$
- (2) If ϕ and ψ are state formulas, then $\mathscr{C}(\phi \land \psi) = \mathscr{C}(\phi) \land \mathscr{C}(\psi)$, and $\mathscr{C}(\phi \lor \psi) = \mathscr{C}(\phi) \lor \mathscr{C}(\psi)$.
- (3) If ϕ is a path formula, then $\mathscr{C}(\forall(\phi)) = \forall(\mathscr{C}(\phi))$, and $\mathscr{C}(\exists(\phi)) = \exists(\mathscr{C}(\phi))$.
- (4) If ϕ is a path formula that is also a state formula, then $\mathscr{C}(\phi)$ is given by the above rules.
- (5) If ϕ and ψ are path formulas, then $\mathscr{C}(\phi \land \psi) = \mathscr{C}(\phi) \land \mathscr{C}(\psi)$, and $\mathscr{C}(\phi \lor \psi) = \mathscr{C}(\phi) \lor \mathscr{C}(\psi)$.
- (6) If ϕ and ψ are path formulas, then
 - (a) $\mathscr{C}(\mathbf{X}\phi) = \mathbf{X}\mathscr{C}(\phi),$ (b) $\mathscr{C}(\phi\mathbf{U}\psi) = \mathscr{C}(\phi)\mathbf{U}\mathscr{C}(\psi),$ and (c) $\mathscr{C}(\phi\mathbf{V}\psi) = \mathscr{C}(\phi)\mathbf{V}\mathscr{C}(\psi).$

Binary Decision Diagram

- Binary Decision Tree - some reduction rules - > Reduced OBDD
- Characteristics of Reduced OBDD
 - Compact representation of boolean functions
 - Canonical: all semantically-equivalent boolean func have exactly the same BDD structures
 - Common operations (+, *, ^) have reasonable complexities (not exponential). The complexities depends on **the size of OBDD**.
 - Size of OBDD critically relies on the variable order. Worst case can be exponential. In some cases we can have only worst case (ex: integer multiplication function).

How is BDD useful?

 State space and transition relations in model M can be represented as Reduced OBDD.



x_1	x_2	x'_1	x'_2	\rightarrow
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

 $f^{\to} \stackrel{\text{\tiny def}}{=} \overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_1' \cdot \overline{x}_2' + \overline{x}_1 \cdot \overline{x}_2 \cdot x_1' \cdot \overline{x}_2' + x_1 \cdot \overline{x}_2 \cdot \overline{x}_1' \cdot x_2' + \overline{x}_1 \cdot x_2 \cdot \overline{x}_1' \cdot \overline{x}_2'.$

Application 1: Model Checking of Linux TCP (2004)

- 50k lines of code
- Size of the system state 250 KBs (~2^2048000 states)
 - The observable universe has ~2^273 atoms

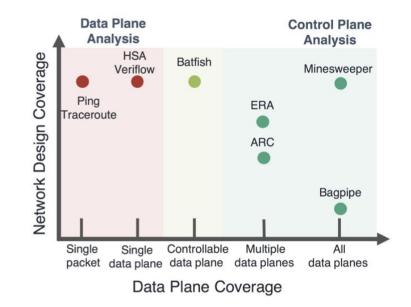
CMC System:

- Runs two Linux Kernels in parallel (two TCP peers)
- Containerised TCP code via an interface
- Compresses states efficiently to deal with state explosion
- Attempts to visit as many states as possible before running out of resources
- Checks for memory leaks, resource leaks, and protocol conformance

Results: Found 4 bugs in implementation

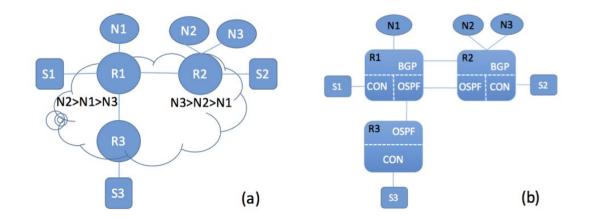
Application 2: Network Configuration Verification

- Most of the network outages happen due to misconfiguration
- We need tools that could verify all data planes for a given configuration



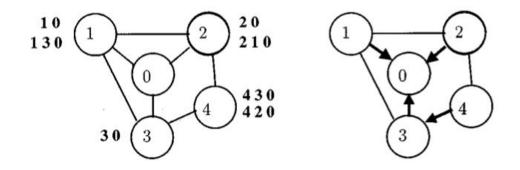
Minesweeper

- Reasoning about **networks as graphs**, not as paths
- Combinatorial search (formal logic) instead of message construction
- BGP as a stable path problem
- Multiple optimizations to scale to size of real networks



Stable Path Problem

- Graph (V, E) with a special node 0 that every other node is trying to reach.
- Paths to 0 from vk: P = (vk, vk-1, ..., 0)
- Path value L(P)
- Stable path assignment s(v) = P if P maximizes the value
- A stable path problem is solvable if every node can have a stable assignment



Results

- Created formal system F that embeds network configuration and constraints
- Type of constraints supported:
 - Reachability and isolation
 - Waypoints, path length, equal paths, disjoint paths
 - Identifying forwarding loops and black holes
 - Load balancing, fault tolerance,
 - Full and partial equivalence
 - Many more
- Testing:
 - Applied to 152 real network, found **120 violations** of must-hold properties
 - Including one that possesses significant security threat