
Computer Security

The Protection of Information in
Computer Systems

Jerome H. Saltzer and Michael D. Schroeder, 1975

Definitions

Privacy: the ability to control whether, when, and to whom information is released.

Security: techniques to control who uses or modifies a computer or the data on it.

Types of security violations:

1. Unauthorized information release
2. Unauthorized information modification
3. Unauthorized denial of use

Levels of Information Protection

● Unprotected systems: no security
● All-or-nothing systems: isolation of users, optionally with globally shared

data or libraries; no nuanced levels of permissions
● Controlled sharing: explicit control over who can access and modify each

file in a system
○ Similar to basic file permissions systems used in modern operating systems

● User-programmed sharing controls: user-specified protected objects and
subsystems; user controls access to a programmable level of detail

● Putting strings on information: maintaining control over use and distribution
of information after its release

Design Principles

1) Economy of mechanism: keep designs small and simple
2) Fail-safe defaults: default to exclusion rather than permission
3) Complete mediation: every access to everything must be checked
4) Open design: security should not depend on secrecy of the design
5) Separation of privilege: mechanisms using multiple separate keys are ideal
6) Least privilege: give the least permissive privileges required for any task
7) Least common mechanism: minimize the mechanisms shared across users
8) Psychological acceptability: mechanisms should be user-friendly

Protection Mechanisms

● Isolated virtual machines
● Authentication

○ Passwords
○ Unforgeable keys
○ Cryptographic authentication

● List-oriented protection
○ All users on a list receive access

● Ticket-oriented protection
○ Each user has a list of objects they

can access

Example: Capability System

● Ticket-based
● Users store protection descriptor

registers in arbitrary memory
locations (capabilities)

Example: Access Control List System

● List-based
● Each memory segment paired

with an access controller
● Access controllers contain

addressing descriptors (i.e.,
memory addresses) and
access control lists

● Access control lists determine
who can access the memory

Example: Protected Subsystem

● Programmable system
● Protected subsystem includes

program and memory
● Only accessible by specific entry

points, with differing permissions

Computer Security
in Real World
Butler W. Lampson, 2004

Challenges for Security in Real World

● Attack from anywhere: any person on the internet can attack you

● Sharing with anyone: you may want to communicate with any user

● Automated infections: viruses can spread from your system to many others

● Hostile code: especially downloaded from the internet

● Hostile environment: public WiFis, physical steal

● Hostile hosts: piracy

Mental Model of Security in Real World

Security is about value, locks, and punishments:

● Intruder’s trade-off:
 (chance of success)*(reward) vs (chance of being caught)*punishment

● Company’s trade-off:
(chance of hacking)*(absolute losses) vs (cost and inconvenience of a security system)

Terminology

Broader Community Meaning Computer Security

Specification What is it supposed to do? Policy

Implementation How does it do it? Mechanism

Correctness Does it really work? Assurance

Policy: Specifying Security

● Secrecy: controlling who gets to read the information
● Integrity: controlling how information is used
● Availability: providing prompt access to information
● Accountability: knowing who has had access to information

Examples:

● MIlitary – secrecy
● News Service – ?
● Baking Portal –?

Sources of Threat

Programs People Communications

Defensive Strategies
Keep everybody out Keep bad guys

from doing damage

 ⚠

Catch bad guys
If the damage is done

 ❌

Keep bad guys out

Mechanism: Implementing Security

Access Control Model

Auditing

Distributed End-To-End Access Control

P => Q:

● Principal P “speaks for” the principal Q
○ e.g. UW NetID aksh speaks for “Aleksei Sholokhov @ UW”

● Q is responsible for everything that P does

Axioms:

● Q can say P => Q – right to grant its own authority
● P => P/N – parent has authority over children

○ P can say K => P/N
○ E.g. “UW” can say “aksh => Aleksei Sholokhov @ UW”

deleg

 MSDirKintel

K_MSDir

Variations and Implementation Details

● Handling bytes
○ It is important to keep the channels secured end-to-end

● Collecting evidence for each link of responsibility
○ Push – client gathers the evidence and hands it to the object that it wants to access

■ Authentication
○ Pull – the object queries client and/or other databases to collect evidence

■ Authorization
● Summarizing evidence: compress P => Q => R into P => R

○ Handy but hard to revoke access
● Compound principals:

○ Alice AND Bob – both principals need to make action to proceed
○ Alice OR FlakyProgram – FlakyProgram can only access what it’s explicitly allowed to.

Discussion

1) Present a famous security breach in a computer system, noting what part of the
system was targeted and what was interesting about the attack approach.

● Meltdown and Spectre (2018)
● Pegasus zero-click iPhone attacks
● Java log4j vulnerability
● Row hammer attack

2) Select one of the functional levels of information processing mentioned in the
Saltzer paper and give an example not already cited in the paper.

● Modern OS permission systems (controlled sharing)
● DRM (putting strings on information)

3) Consider the example given in the Saltzer paper about the shared math library
(shown in Fig 2/6) that uses descriptor based protection but with the users allowed
to write to the shared space. If in the context of one of the systems we discussed
(eg concurrency in databases), some of the participants could be compromised,
what steps can we take to ensure data can be trusted? What implications do the
proposed solution have on the system in terms of availability, ease of
use/management, etc? How about the use case for protection groups (Fig 10)
where a group can be arbitrarily large?

4) What is an example of a case where the statement “You can solve every
problem with another level of indirection, except for the problem of too many levels
of indirection” applies in computer security or computer science in general?

● Disentangling different modules of a processing pipeline
● Two groups of workers communicating via a master node
● Indirection via SQL

