Computer Security

The Protection of Information In

Computer Systems
Jerome H. Saltzer and Michael D. Schroeder, 1975

Definitions

Privacy: the ability to control whether, when, and to whom information is released.

Security: techniques to control who uses or modifies a computer or the data on it.

Types of security violations:

1. Unauthorized information release
2. Unauthorized information modification
3. Unauthorized denial of use

Levels of Information Protection

e Unprotected systems: no security

e All-or-nothing systems: isolation of users, optionally with globally shared
data or libraries; no nuanced levels of permissions

e Controlled sharing: explicit control over who can access and modify each

file in a system
o Similar to basic file permissions systems used in modern operating systems

e User-programmed sharing controls: user-specified protected objects and
subsystems; user controls access to a programmable level of detalil

e Putting strings on information: maintaining control over use and distribution
of information after its release

Design Principles

1)
2)
3)
4)
5)
6)
7)
8)

Economy of mechanism: keep designs small and simple

Fail-safe defaults: default to exclusion rather than permission

Complete mediation: every access to everything must be checked

Open design: security should not depend on secrecy of the design
Separation of privilege: mechanisms using multiple separate keys are ideal
Least privilege: give the least permissive privileges required for any task
Least common mechanism: minimize the mechanisms shared across users
Psychological acceptability: mechanisms should be user-friendly

memory

. . virtual
Protection Mechanisms processor Py
| 5 — program
2 [e1ed A
e |solated virtual machines
. . off -8 \ program
e Authentication privileged ___,} des\c_:riptor B
5 Passwords s?c:te bl:irtuol regl|sters —
o Unforgeable keys | EessE i g routine
o Cryptographic authentication ‘\ é l:“_:_ /
e List-oriented protection \\ |
. . of f
o Allusers on a list receive access program
e Ticket-oriented protection >
O Each user has a list of ObjeCtS they Fig. 3. Fig. 2 redrawn to show sharinu% ofan;::lth routine by two virtual
ocessors simultaneo .
can access " Y
read |write base bound
—

permission bits

Fig. 4. A descriptor containing READ and WRITE permission bits.

Example: Capability System

e Ticket-based

e Users store protection descriptor
registers in arbitrary memory
locations (capabilities)

segmented memory

protection
registers program | | shared
processor / A / routine
i [o] /
4 ¢ —
y — n\
,/ private
/ data base
/- X
catalog for 7’
Doe
catalog for __ private
Smith \\ drgaYbose
\\ J 5o
G private
c data base
3 2

Fig. 6. A simple capability system. Program A is in control of the
processor. Note that there is no way for the processor to address
Smith’s catalog or data base Y. On the other hand, data base X
could be accessed by loading capability C, into a protection descrip-
tor register. Capability C, is loadable because it is stored in a seg-
ment that can be reached from a capability already loaded in protec-
tion descriptor register 2. Note also that the former function of the
privileged state bit has been accomplished by protecting the capa-
bilities. The privileged state bit also has other uses and will be re-
introduced later.

List-based

Each memory segment paired
with an access controller
Access controllers contain
addressing descriptors (i.e.,
memory addresses) and
access control lists

Access control lists determine
who can access the memory

Example: Access Control List System

map relating
unique identifiers to
addressings
descriptors’)

»~ segmented memory

pointer registers

/
processor / segment
1 7 X

f L.;\”\
ICS)
access controller

AC, for segment X

-
principal !
identifier
register

unigue identifier

[unique identifier base [bound|

Fig. 9. A revision of Fig. 5, with the addition of an access controller
as an indirect address to be used on all references by the processor to
the memory. Since the access controller contains permission bits,
they no longer need appear in the processor registers, which have
been renamed “pointer’’ registers. Note that the privileged state bit
of the processor has been replaced with a principal identifier register.

assistants can
invoke this program

Example: Protected Subsystem g v oo

access to components
from outside not

allowed
e Programmable system //
e Protected subsystem includes 5 . N (o
| \\
program and memory < i .
. . e \ /
e Only accessible by specific entry dirker g v il esfronses
. by R, P, ,and Py to grade
points, with differing permissions st g s re olloed
/
k grade
record
protection barrier

enclosing protected
subsystem

Fig. 14. A protected subsystem to implement the grade-keeping system
described in the text. P,, which can be invoked by all students in the
subject, is programmed to return the caller’s grade for a particular
assignment or the distribution of all grades for an assignment. P,,
which can be invoked by the teaching assistants for the subject, is
programmed to allow the addition of new grades to the record but to
prevent changing a grade once it is entered. P,, which can be invoked
only by the instructor, is programmed to read or write on request
any data in the grade record.

Computer Security
In Real World

Butler W. Lampson, 2004

Challenges for Security in Real World

e Attack from anywhere: any person on the internet can attack you

e Sharing with anyone: you may want to communicate with any user

e Automated infections: viruses can spread from your system to many others
e Hostile code: especially downloaded from the internet

e Hostile environment: public WiFis, physical steal

e Hostile hosts: piracy

Mental Model of Security in Real World

What do we want from secure computer systems? Here
is a reasonable goal:

Computers are as secure as real world systems, and

people believe it.

Security is about value, locks, and punishments:

e Intruder’s trade-off:
(chance of success)*(reward) vs (chance of being caught)*punishment

e Company’s trade-off:
(chance of hacking)*(absolute losses) vs (cost and inconvenience of a security system)

Terminology

Broader Community Meaning Computer Security
Specification What is it supposed to do? Policy
Implementation How does it do it? Mechanism

Correctness Does it really work? Assurance

Policy: Specifying Security

Secrecy: controlling who gets to read the information
Integrity: controlling how information is used

Availability: providing prompt access to information
Accountability: knowing who has had access to information

Examples:

e Millitary — secrecy
e News Service — ?
e Baking Portal —?

Mechanism: Implementing Security

Sources of Threat

— T

Programs People Communications

Defensive Strategies

Keep everybody out Keep bad guys out Keep bad guys Catch bad guys
from domg damage If the damage is done

TN 7 T e
-

Access Control Model

g 2 Reference :
Principal e —1 Object
Source Request Guard Resource
\ A N J
Y \‘ Y
Authentication \ Authorization

Auditing

Distributed End-To-End Access Control

P=>Q:

e Principal P “speaks for” the principal Q
o e.g. UW NetID aksh speaks for “Aleksei Sholokhov @ UW”

e Qs responsible for everything that P does

Axioms:

e (Q can say P => Q - right to grant its own authority

e P2 P/N — parent has authority over children
o Pcansay K=>P/N
o E.g. “UW” can say “aksh => Aleksei Sholokhov @ UW”

>

\

\
\
\

MSDir

Microsoft

| says

v

\ Alice@Intel

says \ /
7

KAlice 4*

Alice’s
smart card

Alice’s login

J» Atom@Microsoft

\

ey \

Ksst

system

>t

Spectra
web page

Variations and Implementation Details

e Handling bytes
o Itis important to keep the channels secured end-to-end
e Collecting evidence for each link of responsibility
o Push —client gathers the evidence and hands it to the object that it wants to access
m Authentication
o Pull — the object queries client and/or other databases to collect evidence
m Authorization
e Summarizing evidence: compress P => Q => R into P => R
o Handy but hard to revoke access
e Compound principals:

o Alice AND Bob — both principals need to make action to proceed
o Alice OR FlakyProgram — FlakyProgram can only access what it's explicitly allowed to.

C

ISCUSSION

1) Present a famous security breach in a computer system, noting what part of the
system was targeted and what was interesting about the attack approach.

Meltdown and Spectre (2018)
Pegasus zero-click iPhone attacks
Java log4j vulnerability

Row hammer attack

2) Select one of the functional levels of information processing mentioned in the
Saltzer paper and give an example not already cited in the paper.

e Modern OS permission systems (controlled sharing)
e DRM (putting strings on information)

3) Consider the example given in the Saltzer paper about the shared math library
(shown in Fig 2/6) that uses descriptor based protection but with the users allowed
to write to the shared space. If in the context of one of the systems we discussed
(eg concurrency in databases), some of the participants could be compromised,
what steps can we take to ensure data can be trusted? What implications do the
proposed solution have on the system in terms of availability, ease of
use/management, etc? How about the use case for protection groups (Fig 10)
where a group can be arbitrarily large?

4) What is an example of a case where the statement “You can solve every
problem with another level of indirection, except for the problem of too many levels
of indirection” applies in computer security or computer science in general?

e Disentangling different modules of a processing pipeline
e Two groups of workers communicating via a master node
e Indirection via SQL

