
CSE 550 11/30/22: 
STREAM

Alexandra Michael and Mengqi Chen



STREAM:
The STanford StREam DatA Manager



Background: Data Stream Management Systems (DSMS)

Meaning…

● Time-varying, potentially infinite datasets
● Highly limited memory relative to data quantity, with no random access
● Long-running queries over current and incoming data

STREAM (2003) one of several DSMS or related projects in the early 2000's 
(Berkeley's TelegraphCQ ('03); University of Wisconsin-Madison's NiagaraCQ ('00); others)

● AKA "continuous query systems" or similar
● Distinguished from DBMS's (database management systems) by 

continuous, high-volume data streams

https://en.wikipedia.org/wiki/Data_stream_management_system
https://dsf.berkeley.edu/papers/cidr03-tcq.pdf
https://research.cs.wisc.edu/niagara/Publications.html


STREAM Overview

● Input Streams
● Scratch Store

○ = intermediate state
● Archive

○ storage for preservation or 
offline processing

● Continuous Queries
○ user/application query, active 

until deregistered
● Results

○ streamed, or stored and 
updated over time



CQL (Continuous Query Language)

● a stream is a bag of (tuple, 
timestamp) pairs

○ unbounded, append-only
● a relation (i.e., over data) is a 

time-varying bag of tuples
○ supports update, insert, delete

● streams mapped to relations 
via windowing operators

○ Once mapped, relations are 
transformed and re-streamed as 
output



STREAM Query Processing

1. Query specified in CQL
2. Register query with STREAM
3. Query compiled into query plan, including:

a. Query operators that read, process, and write 
tuples as output

b. Queues to buffer operator input (either from input 
stream or another operator's output)

c. Synopses to maintain operator runtime state
4. Query plan is merged with existing ones 

where possible



STREAM Operator Scheduling

Goal: minimize memory required for backlog buffering

Solution: Chain scheduling

● Breaks up query plans into disjoint chains of consecutive operators
○ E.g., Op1 → Op2 → Op3 could be broken into Op1 → Op2 and Op3

● Bases decisions on which operators consume input most quickly and produce 
least, slowest output

● Schedules the operator chain with highest priority among those that are ready
● "Near-optimal" in some cases, performs well in others
● May suffer starvation, poor response times during input bursts



Ongoing Research

● Efficient query processing
○ Techniques for sharing computation and memory resources among plans, and more

● Cost-based optimization and resource allocation (for query plan generation)
● Scheduling

○ Optimizing chain scheduling to reduce latency during bursts
● Graceful degradation under overload

○ E.g., by load shedding to selectively drop excess input tuples
● Distributed stream processing



Discretized Streams: Fault Tolerant 
Streaming Computation at Scale



Data Stream Computation at Scale

● Many Big Data applications need to handle large amounts of data in real time
● Many distributed stream processing systems do not provide efficient fault 

recovery and do not handle straggler nodes
● This is because of the usage of a continuous operator model, where 

streaming computations are done via long-lived stateful operators
● Replication or upstream backup is needed for fault tolerance
● Node startup, state copy, and node overtake is needed for straggler nodes



D-Streams

● Discretized Streams (D-Streams) solve the fault recovery and straggler issues 
by having short, stateless, deterministic tasks.

● Short: Divide stream data into batches
● Stateless: No need for internal state for example to keep track of computation 

progress. Instead, store state through Resilient Distributed Datasets (RDD)
● Deterministic: each RDD can be recomputed deterministically by using 

lineage information
● A D-Stream is a sequence of partitioned RDDs that can be acted on by 

transformations (e.g. map, reduce)



Record-at-a-Time versus D-Streams



Example 

● Example of a program that 
computes a running count of view 
events by URL by using the 
Apache Spark API



D-Streams in Spark Streaming System



Apache Flink: Stream and Batch Processing 
in a Single Engine



Data Processing at Scale

● Data processing can be done via Data-stream processing or batch data 
processing. These two were considered as two different types of applications.

● Continuous amounts of data arrive, and some application may ignore the 
continuous data flow nature, and instead divide the data into batches

● Flink proposes a unified architecture that can process both data streams and 
data batches via its distributed dataflow engine



Flink Software Stack



Flink Process Model

● Three types of process in a 
Flink cluster

● Client takes program code, 
transforms to dataflow graph 
and submits to job manager

● Job Manager coordinates 
distributed execution

● Task Manager does actual 
data processing



Flink Dataflow Graph

● Stateful operators that 
implement all of the processing 
logic (e.g. filters, hash joins, 
stream window)

● Data streams produced by an 
operator are available for 
consumption by another 
operator

● Pipelined and Blocking data 
exchanged

● Control Events (checkpoint 
barriers, watermarks, etc.)

● Used for both stream and batch 
processing



Fault Tolerance 

● Achieved through 
Asynchronous Barrier 
Snapshotting (ABS)

● Barriers are control 
records injected into the 
data streams with a logical 
time to separate a stream 
into parts

● An operator performs 
alignment phase when 
receiving barrier, and write 
state to durable storage



Kafka: a Distributed Messaging System for 
Log Processing



Distributed Log Processing at Scale

● Use of log data in real-time features requires processing vastly higher 
volumes than for previous uses

● Existing systems primarily scrape and store log data for offline use; 
insufficient for use in online, real-time feature production

● Kafka: LinkedIn's distributed messaging system for log processing, allowing 
real-time consumption of log events by applications



Kafka Architecture

● Producers publish 
messages to topics

● Published messages 
stored on brokers (servers)

● Consumers subscribe to 
topics from brokers and 
pull messages from the 
subscribed topics



Kafka Design Principles

● Efficient storage and data transfer
○ Simple storage mechanism (one topic partition = one 1G logical log)
○ Efficient data transfer with minimum transfer sizes, stateless brokers

● Distributed coordination
○ Consumers grouped to jointly consume messages by topic (evenly divides message load 

among consumer group)
● Delivery: only guarantees at-least-once delivery



Experimental Performance



Discussion Q1

● Describe a query optimization strategy of your choice/Discuss how to address 
a shortcoming of chain scheduling.



Discussion Q2

● Based on the various systems we’ve considered, how will you propose a 
sample distributed stream processing system (as mentioned in the future 
works)

● Distribute operations at different nodes (e.g. pipelines)
● Distribute a single operation across different nodes, need a node to combine 

results
● Challenge of having global time that serializes the data stream

○ Logical Clocks
○ Spanner’s TrueTime
○ Marzullo’s algorithm



Discussion Q3

● Compare one similar and one different characteristic between DBMS and 
DSMS

Similarities
● Relational view of data
● Language
● Query processor
● Operator scheduling
● Optimizations (filtering pushdown, join optimization)

Differences
● Types of query (one-time vs continuous)
● Memory challenges
● Time requirements (timestamps, real-time requirements for DSMS)
● Single query latency vs average latency


