
Machine Learning Systems
CSE 550: Systems for All

Autumn 2022

Lequn Chen



From Algorithm to Deployment

● ML Algorithms
○ Maths, Convergence, Proof, Models, Accuracy

● Programming
○ API

● Execution
● Hardware Design

○ Acceleration for specialized operators
○ Memory capacity, bandwidth
○ Memory hierarchy
○ Communication latency and bandwidth
○ Communication topology



API Abstraction

● Vallina C/Python/…
○ for-loops, array, scalar math ops
○ Tedious, Error-prone

● Vectorized representation
○ numpy, ndarray, dot. Linear algebra.
○ Multiple impls + Hide impl details

● Operators
○ MatMul, Softmax, Convolution

● Layers
○ Dense, Conv2D, Transformer

● Models
○ Layers
○ Control Flow



Machine Learning Frameworks / Compilers

● User-friendly APIs
○ Operators, Layers
○ Optimizers, Loss functions
○ Auto gradient, parameter update
○ Data loading
○ Multi-device, Multi-machine

● Intermediate Representation
○ Graph
○ High-level instruction sets (MLIR, LLVM)
○ Opportunities for auto optimization

■ (Imagine optimizing hand written C/Python)
● Support various accelerator hardware

○ Computation, Memory, Communication



TensorFlow: Graph

● Node: Op
○ Add, MatMul, Conv2D
○ Abstract device-, execution backend-, and language independent API
○ Implemented by Op Kernels written in C++, specialized on

<Type, Device>
● Edge: Data dependency

○ Tensors (ref-counted, n-dimensional array buffers in device memory)
○ Control dependencies: A->B means A must finish before B can run
○ Resource handles to state (e.g. variables, input data pipelines)



TensorFlow: Graph

● Node: Op
● Edge: Data dependency

Graph Analysis & Transformation

● Auto gradient (chain rule)
● Dependency Analysis
● Split subgraph



Grappler: TensorFlow Graph Optimizations

Graph: High-level IR

Not the only IR

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf



https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf



https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf



https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf



https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf



https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf



https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf



TensorFlow 2.0: Eager Execution

Graph Execution

● Build graph
● tf.Session: owns all states
● sess.run(): run the graph

Eager Execution:

● Numpy-like
● PyTorch gain popularity because of eager execution
● print(x)
● Support for dynamic models using easy-to-use Python control flow



TensorFlow 2.0: Eager Execution

● Upside:
○ Fast debugging with immediate run-time errors and integration with Python tools
○ Support for dynamic models using easy-to-use Python control flow

● Downside:
○ Slow

■ Interpreting Python code
■ Fixed, unoptimized code path
■ Issue kernels one by one
■ No op fusion
■ No graph optimizations

● User friendly + Performance
○ tf.function() / torch.jit.script()

■ Trace Python code once for given input specs (function signature, e.g., dtype, shape)
■ Eager code -> Graph



TensorFlow: Data Parallel Training

● One 1000-element mini-batch == 
Ten 100-element mini-batches

● Easiest way to use multiple GPUs
○ Replicate the model across GPUs
○ Shard data across GPUs
○ Compute gradient on each GPU
○ Aggregate gradients

■ Sync: wait for slowest
■ Async: different semantics

● Gradient of old parameters
● Convergence?



Data Parallelism: Parameter Server

● API:
○ ps.push(key, gradient)
○ ps.pull(key)

● Roles:
○ Server: Key-value store; Merge gradient
○ Worker: Calculate gradient

● Consistency Model
○ Sequential (Sync)
○ Eventual (Async)
○ Bounded Delay (tuneable)

● Server bottleneck:
○ High bandwidth demand
○ Synchronized burst
○ How to fix it? (Multi-server!)

https://www.cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf



Data Parallelism: Parameter Server

● Multiple servers
○ Shard across Key space.

● How to deal with skewed key space (e.g., string as keys)?
● How to deal with server load imbalance?
● This reminds you of a paper…



Data Parallelism: Parameter Server

● Multiple servers
○ Shard across Key space.
○ Each server is responsible for a range of keys.
○ Chord?!

■ Load balancing of keys: hashing
■ Load balancing of servers: virtual nodes

Uber Horovod: Challenges with PS

● Worker:PS ratio
○ Single PS: bottleneck
○ One PS per worker: all-to-all, may saturate network switch

● Integration with existing TensorFlow program
○ Service discovery for PS and worker
○ Modify code to shard parameters explicitly

https://arxiv.org/pdf/1802.05799.pdf



Data Parallelism: Collective Communication

https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf 

Page 4-7,11-12,18-47

● Advantage:
○ The number of devices does not affect the latency
○ Bandwidth optimal
○ Interconnect topology aware
○ Minimal modification to code (allreduce)

https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf


Machine Learning Parallelism

● Data Parallelism
○ Small model; Large dataset;
○ Replicate model; Shard dataset; Sync update
○ Collective communication

● Model Parallelism
○ Large model: a model might require multiple devices
○ Pipeline parallelism

■ Partition a model into several stages
■ Less communication; More idle time

○ Operator parallelism
■ Partition an operator along some dimensions
■ More communication; Less idle time

○ Point-to-point communication



Pipeline Parallelism

● No pipeline: bubbles
● GPipe

○ Split a mini-batch as many “micro-batch”
○ Memory: linear to micro-batches

● PipeDream
○ Async update (1F1B)
○ Lose accuracy



Pipeline Parallelism

● No pipeline: bubbles
● GPipe

○ Split a mini-batch as many “micro-batch”
○ Memory: linear to micro-batches

● PipeDream
○ Async update (1F1B)
○ Lose accuracy

● PipeDream-Flush
○ Sync; Alternate Forward & Backward
○ Save memory: linear to pipeline stages

● Megatron-2 Virtual Pipeline
○ Place multiple stages on the same device
○ More communication; Less bubble



Operator Parallelism

● Alpa
○ https://www.usenix.org/sites/default/files/conference/protected-files/osdi22_slides_zheng-lian

min.pdf 
○ Data + Pipeline + Operator parallelism
○ Two tier network topology

https://www.usenix.org/sites/default/files/conference/protected-files/osdi22_slides_zheng-lianmin.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi22_slides_zheng-lianmin.pdf


Model Serving (Inference)

● Latency constraint for real-time tasks
○ e.g., end-to-end latency < 10ms

● Multi-tenancy
○ e.g., multiple models on one GPU cluster

● Request rate fluctuation
○ Piecewise stationary + burst

● Hardware utilization
○ batching under latency constraint

● GPU cluster management
○ load balancing
○ horizontal scaling



Inference Characteristics on GPUs

● Very predictable execution latency
● Concurrent execution increases throughout 

but significantly sacrifices predictability
● Execution latency is linear to batch size

○ latency(bs) := k * bs + c
○ throughput(bs) := bs/latency(bs) ∝ -1/bs

https://www.usenix.org/system/files/osdi20-gujarati.pdf



Model Serving Systems

● Roles:
○ Client
○ Frontend servers

■ Accept client requests
■ Preprocessing (e.g., image decoding)
■ Forward request to backend
■ Postprocessing (e.g., index to label)
■ Send response back to client

○ Backend servers
■ Run models with GPU

○ Scheduler
■ Backend allocation
■ Model mapping
■ Execution plan



Model Serving System: Scheduling

● Schedule:
○ Which GPU to run this batch?
○ Which requests are included in this batch?
○ When to start running this batch?

● Distributed scheduling (Nexus [SOSP’19])
○ Request lifetime: Client -> Frontend -> Backend -> Frontend -> Client
○ Frontend, Backend -> Scheduler: stats
○ Scheduler -> Frontend: List of backends for round robin
○ Scheduler -> Backend: Duty cycle (list of model + batch size)
○ Backend: pick requests for the next batch; run DNN on GPU back-to-back
○ Scheduler, Frontend, Backend all make parts of scheduling decisions



Model Serving System: Scheduling

● Schedule:
○ Which GPU to run this batch?
○ Which requests are included in this batch?
○ When to start running this batch?

● Distributed scheduling (Nexus [SOSP’19])
○ Scheduler, Frontend, Backend all make parts of scheduling decisions

● Centralized scheduling (Clockwork [OSDI’20])
○ Client -> Frontend -> Scheduler -> Backend -> Scheduler -> Client
○ Scheduler can have precision control over backend execution
○ Frontend, Backend are simple, non-decision-making.
○ Scheduler on every request’s data path

■ Bottleneck! (Network bandwidth & CPU)



Model Serving System: Scheduling

● Schedule:
○ Which GPU to run this batch?
○ Which requests are included in this batch?
○ When to start running this batch?

● Distributed scheduling (Nexus [SOSP’19])
○ Scheduler, Frontend, Backend all make parts of scheduling decisions

● Centralized scheduling (Clockwork [OSDI’20])
○ Scheduler can have precision control over backend execution
○ Bottleneck! (Network bandwidth & CPU)

● Centralized scheduling (Symphony [under review])
○ Scheduler only exchange metadata
○ Multi-core scalable scheduling algorithm
○ Better scheduling quality (bigger batch size, higher goodput under latency constraint)



Model Serving System: Scheduling

● Notation:
○ b: batch size
○ l(b): latency of batch size b
○ N: the number of GPUs

● Variables: b, N
● Batching equations

○ Total throughput > Request rate
■ N * b/l(b) > RPS

○ Queuing delay + Execution < latency SLO
■ Non-coordinated: (1 + 1) * l(b) < SLO
■ Coordinated: (1/N + 1) * l(b) < SLO


