Machine Learning Systems

CSE 550: Systems for All
Autumn 2022

Lequn Chen

From Algorithm to Deployment

e ML Algorithms

o Maths, Convergence, Proof, Models, Accuracy
e Programming
o API

e Execution

e Hardware Design

Acceleration for specialized operators
Memory capacity, bandwidth

Memory hierarchy

Communication latency and bandwidth
Communication topology

o O O O O

AP| Abstraction

Vallina C/Python/...

o for-loops, array, scalar math ops
o Tedious, Error-prone

Vectorized representation

o numpy, ndarray, dot. Linear algebra.

o Multiple impls + Hide impl details
Operators

o MatMul, Softmax, Convolution
Layers

o Dense, Conv2D, Transformer

Models

o Layers
o Control Flow

% 204 oas \dense
\ |\13

i
13 dense dense|

1000

128 Max
Max 128 Max pooling
pooling pooling

204 048

for y in range(1024):
for x in range(1024):
ClylIx] =0
for k in range(1024):
Clyl[x] += A[k] [yl = BIk]I[x]

for yo in range(128):

for xo in range(128):

Clyox8:yo*8+8] [xo*8:x0*x8+8] = 0

for ko in range(128):

for yi in range(8):

for xi in range(8):
for ki in range(8):
Clyo*8+yi] [xo*8+xi] +=
Alko*8+ki] [yo*8+yil * B[ko*8+ki] [xo*8+xil]

def softmax(x):
X = X - np.max(x, axis=1, keepdims=True)
X = np.exp(x)
x = x / np.sum(x, axis=1, keepdims=True)

return x

Machine Learning Frameworks / Compilers

e User-friendly APIs

Operators, Layers

Optimizers, Loss functions

Auto gradient, parameter update
Data loading

Multi-device, Multi-machine

e Intermediate Representation
o Graph
o High-level instruction sets (MLIR, LLVM)
o Opportunities for auto optimization
m (Imagine optimizing hand written C/Python)
e Support various accelerator hardware
o Computation, Memory, Communication

o O O O O

TensorFlow: Graph

e Node: Op
o Add, MatMul, Conv2D
o Abstract device-, execution backend-, and language independent API
o Implemented by Op Kernels written in C++, specialized on
<Type, Device>

e Edge: Data dependency

o Tensors (ref-counted, n-dimensional array buffers in device memory)
o Control dependencies: A->B means A must finish before B can run
o Resource handles to state (e.g. variables, input data pipelines)

TensorFlow: Graph

e Node: Op

e Edge: Data dependency
Graph Analysis & Transformation

e Auto gradient (chain rule)
e Dependency Analysis
e Split subgraph

5o o
AR
\/ >

Device A ®

% T
(= End

Grappler: TensorFlow Graph Optimizations

Graph: High-level IR

switt_| -
Not the only IR

Graph]
XLACompiler N
. [TensorFlow.js } TF runtime
executor
TPU GPU/CPU Mobile/ Javascript GPU/CPU
Google Embedded + WebGL

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf

Why transformations at the graph level?

e Pros:

o Many optimizations can be easier to discover and express as high-level graph transformations
m Example: Matmul(Transpose(x), y) => Matmul(x,y, transpose_x=True)

o Graph is backend independent (TF runtime, XLA, TensorRT, TensorFlow.js, ...)

o Interoperable with TensorFlow supported languages (protocol buffer format)

o Optimizations can be applied at runtime or offline using our standalone tool

o Lots of existing models (TF Hub, Google production models) available for learning

o Pragmatic: Helps the most existing TensorFlow users get better “out-of-the-box” performance
e Cons:

o Rewrites can be tricky to implement correctly, because of loosely defined graph semantics
m In-place ops, side-effects, control flow, control dependencies

o Protocol buffer dependence increases binary size

o Currently requires extra graph format conversions in TF runtime

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf

Graph Simplifications

Abstract
Interpretation

S=tf.shape (3)
B=tf.ones (S)

S=[2,2]

[Simplifications] {Materialization]

S=tf constant {2, 213 g=tf.constant([2,2])
B=tf.constant{([[1,1], [1,11]1) B=tf.ones (S)

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf

Constant folding optimizer: simplifyGraph ()

e Removes trivial ops, e.g. identity Reshape, Transpose of 1-d tensors, Slice(x) = x, etc.
e Rewrites that enable further constant folding, e.g.
o Constant propagation through Enter
o Switch(pred=x, value=x) => propagate False through port0, True through port1
o Partial constant propagation through IdentityN
e Arithmetic rewrites that rely on known shapes or inputs, e.g.
o Constant push-down:
m Add(c1, Add(x, c2)) => Add(x, c1 + c2)
m ConvND(c1 *x, c2) => ConvND(x, c1 * c2)
o Partial constfold:
m AddN(cT, x,c2,y) =>AddN(c1 +c2, x,Y),
m Concat([x, c1, c2,y]) = Concat([x, Concat([c1, c2]), y)
o Operations with neutral & absorbing elements:
m X *Ones(s) => Identity(x), if shape(x) == output_shape
X * Ones(s) => BroadcastTo(x, Shape(s)), if shape(s) == output_shape
Same for x + Zeros(s) , x / Ones(s), x * Zeros(s) etc.
Zeros(s) -y => Neg(y), if shape(y) == output_shape
Ones(s) / y => Recip(y) if shape(y) == output_shape

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf

Arithmetic optimizer:

e Arithmetic simplifications
o Flattening: at+b+c+d => AddN(a, b, c, d)
o Hoisting: AddN(x*a,b *x, x *c) => x * AddN(a+b+c)
o Simplification to reduce number of nodes:
m Numeric: x+x+x => 3*x
m Logic:!l(x>y) => x<=y
e Broadcast minimization
o Example: (matrix1 + scalar1) + (matrix2 + scalar2) => (matrix1 + matrix2) + (scalar1 + scalar2)
e Better use of intrinsics
o Matmul(Transpose(x), y) => Matmul(x, y, transpose_x=True)

e Remove redundant ops or op pairs
o Transpose(Transpose(x, perm), inverse_perm)
o BitCast(BitCast(x, dtype1), dtype2) => BitCast(x, dtype2)
o Pairs of elementwise involutions f(f(x)) => x (Neg, Conj, Reciprocal, LogicalNot)
o Repeated Idempotent ops f(f(x)) => f(x) (DeepCopy, Identity, CheckNumerics...)
o Hoist chains of unary ops at Concat/Split/SplitV
o Concat([Exp(Cos(x)), Exp(Cos(y)), Exp(Cos(z))]) => Exp(Cos(Concat([x, Y, z])))
o] o [Exp(Cos(y)) fory in Split(x)] => Split(Exp(Cos(x), num_splits)
oogle

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf

Layout optimizer

Google

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 48

NHWC to NCHW

Conv in NCHW

NCHW to NHWC

!

l

BiasAdd in NHWC

:

Relu

!

MaxPool in NHWC

!

NHWC to NCHW

Conv in NCHW

NCHW to NHWC

!

I

BiasAdd in NHWC

I

NCHW to NHWC

Conv in NCHW

NCHW to NHWC

NHWC to NCHW

Conv in NCHW

|

BiasAdd in NCHW |

|

Relu |

|

MaxPool in NCHW |

— |

J

Convin NCHW |

|

BiasAdd in NCHW |

Conv in NCHW

NCHW to NHWC

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf

Remapper optimizer: Op fusion

e Replaces commonly occurring subgraphs with optimized fused “monolithic” kernels

o Examples of patterns fused:
m Conv2D + BiasAdd + <Activation>
m Conv2D + FusedBatchNorm + <Activation>
m Conv2D + Squeeze + BiasAdd
m MatMul + BiasAdd + <Activation>

e Fusing ops together provides several performance advantages:
o Completely eliminates Op scheduling overhead (big win for cheap ops)
o Increases opportunities for ILP, vectorization etc.
o Improves temporal and spatial locality of data access
m E.g. MatMul is computed block-wise and bias and activation function can be
applied while data is still “hot” in cache.

e A separate mechanism allows the TensorFlow compiler to cluster subgraphs and generate
fused kernel code on-the-fly

Google

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf

TensorFlow 2.0: Eager Execution

i Andrej Karpathy @
Graph Execution @ rasaman ot)
. I've been using PyTorch a few months now
e Build graph and I've never felt better. | have more energy.
. My skin is clearer. My eye sight has
e tf.Session: owns all states iy e

11:56 AM - 26 May 2017

424 Retweets 1,706 Likes @ £ zge Q P C aa‘

Q ;3 1 424 Q 1x,

e sess.run(): run the graph
Eager Execution:

Numpy-like

PyTorch gain popularity because of eager execution

print(x)

Support for dynamic models using easy-to-use Python control flow

TensorFlow 2.0: Eager Execution

e Upside:
o Fast debugging with immediate run-time errors and integration with Python tools
o Support for dynamic models using easy-to-use Python control flow

e Downside:
o Slow
m Interpreting Python code
m Fixed, unoptimized code path
m Issue kernels one by one
m No op fusion
m No graph optimizations
e User friendly + Performance
o tf.function() / torch.jit.script()
m Trace Python code once for given input specs (function signature, e.g., dtype, shape)
m Eager code -> Graph

TensorFlow: Data Parallel Training

e One 1000-element mini-batch ==
Ten 100-element mini-batches
e Easiest way to use multiple GPUs

(@)

(@)
(@)
(@)

Replicate the model across GPUs
Shard data across GPUs
Compute gradient on each GPU
Aggregate gradients
m Sync: wait for slowest
m Async: different semantics
e Gradient of old parameters
e Convergence?

Parameter Device(s)

AP

CE=
P

[Client H—>(Update)

N

\

L1

Device C
% model % }

Jeo

gmocfev.ga} [
Je»

(o
Parameter Device(s)

(Client 3}-—~{Update)

Jds

Synchronous Data Parallelism

(Client 2}

>(Update)<

(Client 1)

>(Update) <

=

Device B

gmodel %

% modeelv%e

leo

|

A

D (g
3

il

.

Asynchronous Data Parallelism

~
(worker 1

_2.push—{xx 228 e |g1

Data Parallelism: Parameter Server [~ é Lo e
'

[xx x x x [wy

3. update \ % Xi 5
e API: v e

7 | x X

4. pull™ |

o ps.push(key, gradient)
o ps.pull(key)
e Roles:
o Server: Key-value store; Merge gradient
o Worker: Calculate gradient
e Consistency Model
o Sequential (Sync)
o Eventual (Async)
o Bounded Delay (tuneable)

e Server bottleneck:

o High bandwidth demand AN
o Synchronized burst <‘® § @ @ @ § O (OJ2) :)

o How to fix it? (Multi-server!) (a) Sequential * (b) Eventual * (c) 1 Bounded delay

worker m)

[xx xxx x|9py

_ 1. compute
training 1

data

[xx x x x xlwm

X

https://www.cs.cmu.edu/~muliffile/parameter_server_osdi14.pdf

Data Parallelism: Parameter Server

e Multiple servers
o Shard across Key space.

e How to deal with skewed key space (e.g., string as keys)?
e How to deal with server load imbalance?
e This reminds you of a paper...

S 3 replicated
~ \\\ by :1

N\

Y2 2

Data Parallelism: Parameter Server

e Multiple servers
o Shard across Key space.

o Each server is responsible for a range of keys.
Averages All the Gradients
o Chord?!

m Load balancing of keys: hashing
m Load balancing of servers: virtual nodes

Uber Horovod: Challenges with PS

e \Worker:PS ratio
o Single PS: bottleneck
o One PS per worker: all-to-all, may saturate network switch SRR LR e G
e Integration with existing TensorFlow program '
o Service discovery for PS and worker
o Modify code to shard parameters explicitly

https://arxiv.org/pdf/1802.05799.pdf

Data Parallelism: Collective Communication

https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf

Page 4-7,11-12,18-47

e Advantage:
o The number of devices does not affect the latency
o Bandwidth optimal
o Interconnect topology aware
o Minimal modification to code (allreduce)

https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf

Machine Learning Parallelism

e Data Parallelism

o Small model; Large dataset;
o Replicate model; Shard dataset; Sync update

o Collective communication '“at"'ul]_'[relu Hmat"‘“l

e Model Parallelism

o Large model: a model might require multiple devices
o Pipeline parallelism
m Partition a model into several stages matmul relu J~{matmul}—~sub)
m Less communication; More idle time '
o Operator parallelism
m Partition an operator along some dimensions
m More communication; Less idle time

o Point-to-point communication 5= - = -

wl w2

L

I
| w2
I

wl w2

Pipeline Parallelism

No pipeline: bubbles
GPipe

o Split a mini-batch as many “micro-batch”

o Memory: linear to micro-batches
PipeDream

o Async update (1F1B)

o Lose accuracy

Worker 1 1)1
Worker 2 NRR 111 RN
Worker 3 A 8 |
Worker 4 1(1
- &
Time
All inputs use weights from last flush Pipeline flush:
2 g add gradients
Worker 1 1(1 3 nn 5 6
Worker 2 T2 2 \
Worker 3 1]1]2]2]3]3
Worker 4 11202]2]3]4 [« NNMRERRMTTIHN

Time
I Forward Pass [Backward Pass

NN Idle

Startup State Steady State

o
>

Time

I Forward Pass [| Backward Pass RN\ ldle

Pipeline Parallelism

Device 1 [lEAERSCHNVAR:] 2 |3|4(5(6|7 |8 ERUIVIEIEIEI

Device 2 12345678 3|4a(|5|6|7|8 910111213141516

Device 3 12345678 45|67 910111213141516 a
e No pipeline: bubbles Device 4 [l AR ° s[e]7]e o oo

Time ——— Devices idle

e GPipe
o Split a mini-batch as many “micro-batch”
o Memory: linear to micro-batches

Device 1

e PipeDream Device 2
Device 3
o Async update (1F1B) e
o Lose accuracy Ume — 1 Assign multiple stages
. to each device
e PipeDream-Flush : R B
P cevee | IR T AR o) G-
o Sync; Alternate Forward & Backward Device 2 - |EEE i MR 7 o[l RR R e
. . i Device 3 1234“ 3 au 2 za 9“;:‘.‘ o ;ﬂla;;gwagnanga
o Save memory: linear to pipeline stages pevices [a5« FEPTEIEN. 1. 111, ES B o ol - R

Time ——

e Megatron-2 Virtual Pipeline

o Place multiple stages on the same device
o More communication; Less bubble

Operator Parallelism

e Alpa
o https://www.usenix.org/sites/default/files/conference/protected-files/osdi22 slides zheng-lian
min.pdf

o Data + Pipeline + Operator parallelism
o Two tier network topology

https://www.usenix.org/sites/default/files/conference/protected-files/osdi22_slides_zheng-lianmin.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi22_slides_zheng-lianmin.pdf

Model Serving (Inference)

e [atency constraint for real-time tasks
o e.g., end-to-end latency < 10ms
e Multi-tenancy
o e.g., multiple models on one GPU cluster
e Request rate fluctuation
o Piecewise stationary + burst
e Hardware utilization
o batching under latency constraint
e GPU cluster management

o load balancing
o horizontal scaling

99.999+
99.99-
99.95

Inference Characteristics on GPUs

Percentile

e Very predictable execution latency N=====—-—
2.895 2.900

e Concurrent execution increases throughout Latency (ms)
but significantly sacrifices predictability

, . , 500
e Execution latency is linear to batch size Z a0l]| 1003
& 7]]
. — * e]
o latency(bs) ==k *bs + ¢ 3 300 §]
o throughput(bs) := bs/latency(bs) o< -1/bs Eﬂzoo— 2 103
Z 100] 5 =
H
200 A
— VGG-16 1200 0"7T2 7316 I"'T7273816
1751 = Inception Inception
1so) — Resiet:50 T 1000 Concurrency Concurrency
é 125 £ w0
2 100 3 ResNet-50
I g 600
g 75 3
E 400
50 4 [Y=
s 200 VGG-16
0 T T T T T T 0 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Batch size Batch size https://www.usenix.org/system/files/osdi20-gujarati.pdf

Model Serving Systems

e Roles:

o Client

o Frontend servers
m Accept client requests
m Preprocessing (e.g., image decoding)
m Forward request to backend
m Postprocessing (e.g., index to label)
m Send response back to client

o Backend servers
m Run models with GPU

o Scheduler
m Backend allocation
m Model mapping
m Execution plan

Model Serving System: Scheduling

e Schedule:
o Which GPU to run this batch?
o Which requests are included in this batch?
o When to start running this batch?

e Distributed scheduling (Nexus [SOSP’19])

o Request lifetime: Client -> Frontend -> Backend -> Frontend -> Client
Frontend, Backend -> Scheduler: stats

Scheduler -> Frontend: List of backends for round robin

Scheduler -> Backend: Duty cycle (list of model + batch size)

Backend: pick requests for the next batch; run DNN on GPU back-to-back
Scheduler, Frontend, Backend all make parts of scheduling decisions

o O O O O

Model Serving System: Scheduling

e Schedule:
o Which GPU to run this batch?
o Which requests are included in this batch?
o When to start running this batch?

e Distributed scheduling (Nexus [SOSP’19])

o Scheduler, Frontend, Backend all make parts of scheduling decisions

e Centralized scheduling (Clockwork [OSDI'20])

Client -> Frontend -> Scheduler -> Backend -> Scheduler -> Client
Scheduler can have precision control over backend execution
Frontend, Backend are simple, non-decision-making.
Scheduler on every request’s data path

m Bottleneck! (Network bandwidth & CPU)

(@)
(@)
(@)
(@)

Model Serving System: Scheduling

e Schedule:

o Which GPU to run this batch?
o Which requests are included in this batch?
o When to start running this batch?

e Distributed scheduling (Nexus [SOSP’19])

o Scheduler, Frontend, Backend all make parts of scheduling decisions

e Centralized scheduling (Clockwork [OSDI'20])

o Scheduler can have precision control over backend execution
o Bottleneck! (Network bandwidth & CPU)

e Centralized scheduling (Symphony [under review])
o Scheduler only exchange metadata
o Multi-core scalable scheduling algorithm
o Better scheduling quality (bigger batch size, higher goodput under latency constraint)

Model Serving System: Scheduling

° Nota;icz)n; hs iwait l(bf 2.1(b) < SLO
o b: batch size =
o I(b): latency of batch size b T
o N: the number of GPUs {a) Backends run independently
e Variables: b, N Wait 1(b)/
e Batching equations ! (1|+1/N) ']l(b) - SLIO
o Total throughput > Request rate :ll | | |

= N*b/i(b) > RPS O T T 1

o Queuing delay + Execution < latency SLO »
m Non-coordinated: (1 + 1) *I(b) < SLO
m Coordinated: (1/N + 1) * I(b) < SLO

(b) Staggered execution

