
Map Reduce
Matthew Arnold & Benedikt Schesch

Google MapReduce Goals and Achievements

Goals

● Express real world problems using simple model
● Process large datasets without specialized per-project software
● Hide systems engineering behind abstraction, conceptually straightforward

Achievements

● Widely used by Google (0-900 instances within a year)
● “Good enough” performance compared to custom solutions
● Typically much less code, easier to reason about

Map and Reduce Primitives

● Map - takes input pair and produces intermediate kv pairs
● Reduce - accepts intermediate kv pairs and performs some operation,

emitting final list of values

Example: count number of occurrences of each unique word

● Map input (file name, file contents) kvp and outputs list of (word, count) kvp
● Intermediate groups together all intermediate kvp of the same key (i.e. all

words’ counts)
● Reduce input (word, count list) kvp and outputs list of counts

Hadoop vs Google MapReduce Word Counter
public class WC_Mapper extends MapReduceBase

 implements Mapper<LongWritable , Text, Text, IntWritable > {

 private static final IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value,

 OutputCollector <Text, IntWritable > output, Reporter

reporter

) throws IOException {

 String text = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(text);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 output.collect(word, one);

 }

 }

}

class WordCounter : public Mapper {

public:

 virtual void Map(const MapInput &input) {

 const string &text = input.value();

 const int n = text.size();

for (int i = 0; i < n;) {

 while ((i < n) && isspace(text[i])) i++; // Find word start

 int start = i;

 while ((i < n) && !isspace(text[i])) i++; // Find word end

 if (start < i)

 Emit(text.substr(start, i - start), "1");

 }

 }

};

My takeaway - frontend APIs functionally equivalent

Hadoop vs Google MapReduce Word Counter
public class WC_Reducer

 extends MapReduceBase

 implements Reducer<Text, IntWritable , Text, IntWritable > {

 public void reduce(

 Text key,

 Iterator<IntWritable > values,

 OutputCollector <Text, IntWritable > output,

 Reporter reporter

) throws IOException {

 int value = 0;

 while (values.hasNext()) {

 value += values.next().get();

 }

 output.collect(key, new IntWritable(value));

 }

}

class Adder : public Reducer {

 virtual void Reduce(ReduceInput *input) {

 // Iterate over all entries with the

 // same key and add the values

 int64 value = 0;

 while (!input->done()) {

 value += StringToInt(input->value());

 input->NextValue();

 }

 // Emit sum for input->key()

 Emit(IntToString(value));

 }

};

Characterizing
Throughput

Why do throughput graphs
look the way they look?

Why is input rate higher
than shuffle/output rate?

Characterizing
Throughput

Why does input throughput
graph look the way it does?

● Forking process across
cluster (slow startup)

● Execution of map worker
and cooldown as
backups/slower processes
finish

Characterizing
Throughput

Why does shuffle throughput
graph look the way it does?

● First wave of map workers
finishing

● Second wave of map
workers finishing, backups
working

Characterizing
Throughput

Why does shuffle throughput
graph look the way it does?

● Waiting for mapping and
intermediate shuffling

● Processing (throughput <
shuffling because output
replicated

Discussion

1. Are there any optimizations you can make to reduce resources (energy,
memory, compute, communication etc) used by MapReduce. Does your
proposal introduce another complexity?

Discussion

1. Are there any optimizations you can make to reduce resources (energy,
memory, compute, communication etc) used by MapReduce. Does your
proposal introduce another complexity?

● Optimizing backup tasks
○ Earlier select tasks that fail or straggle to reduce tail
○ Aren’t randomly rescheduling remaining tasks, targeting tasks that are lagging behind
○ How do we characterize a worker as a straggler?

● Replication of master to avoid restart when master fails
● Reducing latency between map and reduce

○ Optimizing spatial locality s.t. map and reduce workers that access intermediate data close to
each other

○ Combiner function ran by map worker attempts to increase throughput by reducing
intermediate repetition

Discussion

2. Describe an unlikely yet interesting use case of the MapReduce system.

Discussion

2. Describe an unlikely yet interesting use case of the MapReduce system.

Anywhere where big data exists

● Social network platforms - count number of memes in social networking
platform, etc.

● MapReduce for real-time data
○ Paper written when you have all data in db, but MapReduce has some desirable

characteristics for analyzing real-time data (think IOT sensor)
○ Reducing scheme fits real-time data well

■ Reduce becomes reduce(prevResults, reduce(newData…))
■ Continuous MapReduce: https://github.com/estuary/flow

https://github.com/estuary/flow

Discussion

3. In DeWitt and Stonebreaker’s response
http://craig-henderson.blogspot.com/2009/11/dewitt-and-stonebrakers-mapre
duce-major.html, they say: “Given the experimental evaluations to date, we
have serious doubts about how well MapReduce applications can scale.” This
seems, at its face, ridiculous. Discuss what they might sensibly mean here.

Discussion

3. In DeWitt and Stonebreaker’s response
http://craig-henderson.blogspot.com/2009/11/dewitt-and-stonebrakers-mapre
duce-major.html, they say: “Given the experimental evaluations to date, we
have serious doubts about how well MapReduce applications can scale.” This
seems, at its face, ridiculous. Discuss what they might sensibly mean here.

Discussion

4. MR is an exemplar of the different design methodologies of the systems and
DB communities. Who is right?

Discussion

4. MR is an exemplar of the different design methodologies of the systems and
DB communities. Who is right?

● MP vs Parallel DBMS
○ Parallel DBMS - DM system running over multiple nodes, supporting SQL queries
○ MP’s purpose is to process data
○ DBMS has multiple purposes, one of which includes processing, but also storage and

management
○ DBMS better at simpler queries, MP more expressive

Discussion

● “A Comparison of MapReduce and Parallel Database Management Systems”
○ Competing paradigms

■ Large data volumes
■ Analytics - Parallel DBMS optimized for simple queries, for complex algorithms MR can

be more efficient
○ Complementary paradigms

■ MR doesn’t suffer from Parallel DBMS issue of load time, but once loaded Parallel good
for repeated queries

■ Analytics again - both serve different purposes

Criticism

- DeWitt and Stonebraker's "MapReduce: A major step backwards" criticise the
MapReduce approach

1. MapReduce is a step backwards in database access

2. MapReduce is a poor implementation

3. MapReduce is missing features

4. MapReduce is not novel

5. MapReduce is incompatible with the DBMS tools

Criticism

1. MapReduce is a step backwards in database access

Schemas are good since they allow to separate the structure of data with the
algorithms that run on it. Two approaches to DBMS access programing:

● By stating what you want - rather than presenting an algorithm for how to get it
(relational view)

● By presenting an algorithm for data access (Codasyl view)

Makes it difficult to understand a program from an exterior perspective

Criticism

2. MapReduce is a poor implementation

No indexing only allows for brute force computations, imagine you have a query
that only looks at a very small subset of the data.

Assume in the map phase when there is wide variance in the distribution of
records with the same key. Some reduce instances will take much longer than
others.

Push vs Pull (Each Reduce will ask each Map its file)

Criticism

3. MapReduce is missing features

No way to update data

No Transactions, parallel updates and failure recovery

No Constraints/Integrity checks to filter out bad data

No Indexing

Criticism

4. MapReduce is not novel

Similar approaches have already been created a long time ago.
“xapping/reduction” was found in 1985 Danny Hillis’s Thesis.

5. MapReduce is incompatible with the DBMS tools

All tools build on top of SQL are no longer usable.
E.g. Oracle Data Mining to discover structure in large datasets

Criticism

Paper: A Comparison of Approaches to Large-Scale Data Analysis

Hive

● MapReduce is surprisingly expressive
● One can express certain SQL queries with

MapReduce operations
● Writing and maintaining Map/Reduce operations

is difficult

SQL and Query
plan to generate
daily counts of
status updates by
school and gender
(3 map-reduce
jobs for multi-table
insert query)

