
CSE 550: Systems for all
Au 2022

Ratul Mahajan

The need for structured data

Unstructured data is arbitrary blob of bytes (for the storage system)
• Arbitrary blobs of bytes to be interpreted by programs
• Example systems: Chord, Memcached, GFS

Lots of data is structured
• Relationships between data items
• "Web scale” requires the ability to look up items and relationships quickly.

• Billions of websites, TB of data
• Data should also be searchable, sortable, etc.
• Too hard to build applications without system support for such data/functions

Why not a commercial DBMS?

Existing systems simply could not scale
• Web data is orders of magnitude larger that “bank workloads”
• Some tried: FB used MySQL for years and had a team focused entirely on

getting it to scale

Existing systems were hard to tune for modern workloads
• Web relationships are rich; bank transactions are narrow, non-overlapping
• Workloads evolve rapidly – roll out new features/products
• Different goals: Optimize cost -- don’t use high-end machines, tolerate failures

• 2000: 2500+ for search, 15K+ by 2004, and 250K+ by 2007

Relaxing SQL

Can improve performance by “relaxing” the guarantees of traditional
DBMS systems. But relax what?

A - Availability
C - Consistency
I - Isolation
D - Durability

(No - Unavailable means we can’t serve websites)

(Yes - “eventually consistent” is good enough)

(Mostly no - We don’t want malformed data)

(Mostly no - Missing data can be a problem)

Relaxing consistency

Idea: Sacrifice strong consistency for improved performance

Particularly appealing to Web use cases -
• Search: can show older (~few hours) web results
• Social: can show out-of order newsfeed elements
• Ads: only need to maintain eventual count

“Eventual” is one form of relaxed consistency
• Merge different results into final result
• Easier to implement (not necessarily easy)

• Requires merging or versioning

NoSQL Databases

Developed in early Web 2.0 period

Designed to scale laterally
If you need more storage, provision more machines

Really more about non-relational DBs (noSQL follows)

Tend to not support many traditional DBMS properties
Specifically, largely lack the ability to do joins

Joins combine columns from different tables, require that relationships between data
elements remain consistent

Key-Value Stores

Essentially a large distributed hash table
Things inside of the table are inherently opaque to the DB
Simplifies much of the DB operation
Expect the application to handle the logic

DB handles stable storage and consistency
Examples: memcached, Amazon’s Dynamo, BerkeleyDB, Redis

“Document-oriented” database

Specialized key-value store
• Specific focus on “semi-structured” data
• “Documents” fit a specific format, e.g., JSON, XML, etc
• Examples: MongoDB, couchDB, Microsoft’s CosmosDB, Amazon’s SimpleDB

Reduce space of queries to improve performance: range, regex, field

Core functions: CRUD
• Creation (or insertion)
• Retrieval (or query, search, read or find)
• Update (or edit)
• Deletion (or removal)

Consider these specialized DBs

• Time-series DBs: Data with timestamps (e.g., IoT sensors)
• Graph DBs: Graph relations (not tables); edge labels are first-class
• Object DBs: Like document DBs but store program-defined objects

Q1: How might you optimize data placement and query speed?

Q2: What guarantees should be given?

Key points:

- Lots of ways to optimize (SQL or not) for specific data types
- Guarantees depend more on applications not data types

Back to Spanner

Nature of data?

Consistency model?

Where is the trade-off?

Over to Tongyan and Tuochao

