
Spanner: Google’s
Globally-Distributed Database

Tuochao Chen, Tongyan Wang

What is Spanner

Spanner is Google’s scalable, multi-version, globally-distributed, and
synchronously-replicated database. It is the first system to distribute data at global
scale and support externally-consistent (provides clients with the strictest
concurrency-control guarantees for transactions) distributed transactions.

Why Spanner?

Pros & Cons of Bigtable & Megastore:

Bigtable:
Pros: It supports high read and write throughput at low latency
Cons: asynchronous when performing cross-data center replication, thus only
achieve eventual consistency; more like a key-value storage thus can be difficult
to use.

Megastore:
Pros: support schemas and provides a SQL-based query language.
Cons: suffers from relatively poor write throughput.

Advantages of Spanner

1. Supports general-purpose transactions, and provides a SQL-based query
language; Data is stored in schematized semi-relational tables.

2. Each transaction is automatically timestamped with its commit time. Provides
externally consistent reads and writes, and globally-consistent reads across
the database at a time-stamp.

Data Model of Spanner

Bigtable (schemaless) vs Spanner

“Each database can contain an unlimited number of schematized tables…”

“Spanner’s data model is not purely relational. More precisely, every

table is required to have an ordered set of one or more primary-key

Columns..”

Organization

● A Spanner deployment is called a
universe. Each Spanner is separate
for different universe.

Figure 1: Spanner server organization

Organization

● Spanner is organized as a set of
zones, which are the unit of
administrative deployment. The set of
zones is also the set of locations
across which data can be replicated.

Figure 1: Spanner server organization

Organization

● A zone has one zonemaster and
between one hundred and several
thousand spanservers.

Zonemaster assigns data to
spanservers while spanserver serve
data to clients.

Figure 1: Spanner server organization

Organization

● The per-zone location proxies are
used by clients to locate the
spanservers assigned to serve their
data.

Figure 1: Spanner server organization

Organization

● The universe master is primarily a
console that displays status
information about all the zones for
interactive debugging.

● The placement driver handles auto-
mated movement of data across
zones on the timescale of minutes.

Figure 1: Spanner server organization

Spanserver Software Stack

The main components of distributed
storage system are familiar:

● 2 Phase Commit
● Paxos and Replica

Figure 2: Spanserver software stack

Spanserver Software Stack - Bottom Part

● Each Replica is responsible for one
tablet and Colossus, which is used
for data storage

● Leader: efficiently execute Paxos
protocol.

● The set of part that are responsible
for the same dataset is called a
paxos group.

Figure 2: Spanserver software stack

Spanserver Software Stack - Top Part

● Lock table:
Control read-write access

● Transition manager:
Responsible for the data exchange
between groups

● Participant Leader:
In charge of 2 phase commit and
ensure consistency of transaction.

Figure 2: Spanserver software stack

Directories and Placement

A directory is the unit of data placement. All data in a
directory has the same replication configuration.
When data is moved between Paxos groups, it is
moved directory by directory.

Pros and cons of directory movement:

1. Balance load between different paxos group
2. Lower latency of data read & write by moving

directory to a paxos group that are closer to the
client.

TrueTime API

t_abs

TT.now() = [earliest, latest]

TT.after(t)

TT.before(t)

t

t

TrueTime API Achieved by GPS and atomic clock

(uncertainty < 10ms)

GPS Clock

GPS Clock

GPS ClockAtomic Clock

Atomic Clock

Atomic Clock

GPS Clock

GPS Clock

GPS Clock Atomic Clock

Atomic Clock

Atomic Clock

daemon daemon

Assign Timestamp

Given transaction, Spanner assigns it the timestamp that Paxos assigns to the
Paxos write that represents the transaction commit.

External Consistency Requirement

If a transaction e1 commits before another transaction e2 starts, then e1’s
commit timestamp is smaller than e2’s:

s1 e1

s2 e2

 t_abs(e1_commit) < t_abs(e2_start) s1 < s2

External Consistency Rules

 t_abs(e1_commit) < t_abs(e2_start) s1 < s2

Start: When coordinate leader recv commit request

(ei_server), assign si to ei with si > TT.now().latest

Commit Wait: After si is assigned, commit the transaction

(ei_commit) when TT.after(si) comes true.

External Consistency Achievement

 t_abs(e1_commit) < t_abs(e2_start) s1 < s2

e1_commit

World times1

e2_start e2_server

Coordinate leader:

Commit Wait

s2

e2_commit
ε ε ε

Commit WaitStart

Monotonicity Invariant

A leader must only assign timestamps
within the interval of its leader lease.

World time

s_max TT.after(s_max)

Abdicating

Leader_i

ε

Concurrency control

if a transaction T1 commits before another transaction T2 starts, then T1’s
commit timestamp is smaller than T2’s.

Read-Write Transaction:

Client

Participant

leader

Paxos Group

……

Participant

leader

Paxos Group

Read-Write Transaction:

Client

Participant

leader

Paxos Group ……

Participant

leader

Paxos Group

Participant

leader

Paxos Group

Reader Request

Reader Request

Reader Request

Read-Write Transaction:

Client

Participant

leader

Paxos Group ……

Participant

leader

Paxos Group

Participant

leader

Paxos Group

Recent data

Read-Write Transaction:

Client

Participant

leader

Paxos Group

……

Coordinare leader

Participant

leader

Paxos Group

2PC begins

Write commit Query Write commit Query

Read-Write Transaction:

Client

Participant

leader

Paxos Group

……

Coordinare leader

Participant

leader

Paxos Group

2PC begins

Prepare reply (t_prepare)
Prepare reply (t_prepare)

Read-Write Transaction:

Client

Coordinare leader

Assign timestamp and commit

wait

t_prepare t_prepare

Read-Write Transaction:

Client

Coordinare leader

Participant

leader

Paxos Group

……

Participant

leader

Paxos Group

Write commit s

Write commit s Write commit s

Thank you

