
Large Scale Storage Systems
CSE 550: Systems for All

Autumn 2022

Lequn Chen



Peer-to-peer
Systems

Large Scale
Storage Systems

CSE550 Au22

Chord



Storage Systems

“Read this before you start another storage system project.” – BigTech Intranet

There are so many storage systems already.

Why do we need different storage systems?

How about keep everything on a file system?

● e.g. Maildir

Image: Wiki: Maildir

*mailman2 uses database instead of raw filesystem



Examples of Data Store

● File System
● Network File System
● Chunk-based file system
● Object storage
● Key-value Database (“key-value pair”)
● Relational Database (“table”)
● Document Database (“nested dicts”, “json”)
● Time-series Database (“vector”)
● Graph Database
● Blockchain
● Distributed hashing table

● Google File System / HDFS / Ceph
● Amazon S3
● Memcached / Redis
● Spanner / Postgres / MySQL
● MongoDB / Dynamo / BigTable
● InfluxDB
● F1 / Dremel
● Chubby / ZooKeeper / Etcd
● Chord
● DNS (Domain Name System)



Challenges on Large Storage Systems

● Scalability
○ “The file system” itself needs to span 

across multiple machines
○ 1 machine / 10s, 100s, 1000s of machines
○ Same network switch; Same datacenter; 

Across datacenter; Across region; Globe
○ 1 user / 10, 1k, 1m users
○ Byte, KB, MB, GB, TB, PB, EB, ZB, YB

● Replication / Availability / Redundancy
● Storage Media

○ Memory, Hard Drive, SSD, Tape
○ Read/Write performance
○ Random access performance
○ Durability (Data Loss)

● Semantics
○ POSIX File System :(
○ Transaction, Atomicity

● Workload
○ Read/Write ratio
○ Append-only vs. Random access

● Consistency
● Permission Control

○ Who can join the system
○ Who can read/write
○ Who can decide event ordering

● Security and Data Safety (Attack Model)
● …

What are some dimensions to categorize a 
storage system?



Dimension: Structure

● Unstructured data
○ Key-value store (e.g., Memcached, Redis)
○ Object store (e.g., Amazon S3) “object” means big blobs (e.g., images, files)
○ Hierarchical namespace: file systems, DNS, object store
○ Flat namespace: memcached, redis, DHT (Chord)

● Structured data: Table
○ Postgres / MySQL
○ Spanner
○ BigTable
○ F1 / Dremel

● Structured data: Graph
○ Facebook TAO



Dimension: Durability

● Caching
○ Memcached, Redis
○ Focus on in-memory performance

● Persistent data
○ Dynamo
○ Databases…
○ Write to disk
○ You don’t want to lose data

■ Write-ahead log
■ fsync semantics
■ “completion” signal



Dimension: Consistency

● Strong consistency
○ Lock service; Cluster management metadata
○ Chubby / ZooKeeper / Etcd
○ Slower performance; Easier to reason about (easier to use)

● Eventual consistency
○ Web crawler; Shopping cart; Social media profile
○ Dynamo / BigTable
○ Higher performance; Harder to program correctly

● Transactional consistency
○ Relational Database



Dimension: Cluster Size

● 1 machine
○ Filesystem
○ SQLite / Postgres

● A few machines
○ NFS
○ Postgres
○ Fault tolerance; Read optimization;
○ Primary-backup; Replication;

● 100s / 1000s of machines
○ Spanner
○ Throughput scalability
○ Replication + Sharding

● Many machines but they don’t chat with each other
○ Redis, Memcached
○ Clients need to know the list of servers
○ Probably some other systems tell a client which server to talk to. e.g., Google’s Slicer



Dimension: Abstract Level

● Chunk
○ Google File System / HDFS
○ Optimized for write, append, big chunk of data.

● Key-value Store
○ Random access
○ Key locality

● Filesystem
○ NFS
○ POSIX file system semantics; Compatible with existing software

● Database
○ Transaction semantics
○ Analytical performance

● Can be built upon each other



Dimension: Data Size

● Metadata (B~KB)
○ DHT (Chord)
○ Chubby / ZooKeeper / Etcd
○ Correctness

● Big chunks (MB~TB)
○ Object store (Amazon S3)
○ Google file system / HDFS
○ Network bandwidth; Pipelining; Caching (e.g., CDN)

● Somewhere in between
○ Databases
○ Transaction semantics
○ Requests per second



Dimension: Read/Write Workload

● OLTP (online transactional processing)
○ INSERT / UPDATE / DELETE / BEGIN TRANSACTION
○ Write tiny bit of data; Simple transactions
○ Latency; Concurrency; Availability; Atomicity; Consistency; Isolation; Durability
○ Spanner

● OLAP (online analytical processing)
○ SELECT
○ Read a huge amount of data
○ Throughput
○ F1

● Column-based storage
○ Time-series DB
○ Vectorized computation (e.g., add, max)
○ Data compression (e.g., store difference)



Dimension: Permission Control

● Peer-to-peer
○ DHT (Chord) / BitTorrent / IPFS
○ Free to join; Free to leave; Everyone can read/write; Might have bad actors
○ How to distribute information effectively and efficiently
○ How to tolerate stale or bad information

● Centralized
○ Databases
○ Under the same administrative domain.
○ Vulnerable to hackers. Need to harden security.

● Permissionless blockchain
○ Bitcoin / Ethereum
○ Free to join; Everyone can send txs;
○ Agree on ordering; Everyone can take part in ordering

● Permissioned blockchain
○ Binance Smart Chain
○ Everyone can send txs
○ Only a few validators can decide the ordering (hence “permissioned”)


