
Chord: A Scalable Peer-to-peer 
Lookup Protocol for Internet 

Applications



Motivation

● Advent of peer-to-peer (P2P) systems where resources are distributed and all 
nodes are equally important to provide a single application

● First popular P2P systems include Napster, Freenet, Gnutella, BitTorrent
● Core operation in P2P systems is efficient location of data items



Centralized P2P Systems

● Napster was one of 
the first P2P file 
sharing application 
with an emphasis on 
digital audio file 
distribution.

● Napster used a 
central index server 
that had all the 
information about 
which node contains 
which data

Any issues?



More Distributed P2P system

● Gnutella is a P2P 
system with a flat 
topology 
composed of 
peers(servent) 
and a 
Host(GnuCache) 
that contains the 
list of current 
servent

● Query flooding 
model



Distributed P2P Systems

● Freenet is fully decentralized and 
symmetric and automatically adapts 
when hosts leave and join. 

● Freenet document search involves a 
starting node sending request to another 
node, which in turn may send more 
request to other nodes, and so on until 
the document is found, or the max 
number of hops is reached.

● Prevents it from guaranteeing retrieval of 
existing documents or from providing low 
bounds on retrieval costs. 



Motivation - continued

● Core operation in P2P systems is efficient location of data items
● These P2P systems motivated research for efficient distribution of data items 

and retrieval. 
● First protocols for efficient data items storage and retrieval include CAN, 

Chord, Pastry, and Tapestry.



Chord Protocol

● Distributed protocol that provides efficient lookup of data items
● It uses consistent hashing

○ Given a key -> map the key to a node
● Provide foundation for distribution of data. Some examples of application built 

on top of Chord can include
○ Cooperative mirroring
○ Time-shared storage
○ Distributed indexes
○ Combinatorial search



System Model

Simplify design of peer-to-peer systems by addressing following issues:

● Load Balance
○ Spread keys evenly over nodes

● Decentralization
○ Fully distributed, all nodes are equally important

● Scalability
○ Lookup cost grows as the log of the number of nodes

● Availability
○ Lookups work even when internal state changes (e.g. nodes joining or exiting)

● Flexible naming
○ No constraints in the structure of the keys



Consistent Hashing

● Assign each nodes and key an m-bit identifier using a hash function such as 
SHA-1

○ For nodes, hash the node’s IP address
○ For keys, hash the key itself

● m must be large enough such that the probability of nodes having the same 
hash is low

● Nodes are ordered in a circle (Chord ring) based on their identifier modulo 
2^m

● A key k is assigned to the first node (successor node) whose identifier (hash) 
is equal to or follows k in the circle.



Consistent Hashing - Example



Consistent Hashing - Simple Lookup

What is the issue? Inefficient, might need to visit all 
nodes for an answer



Consistent Hashing - Scalable lookup

● Store additional routing 
information (e.g. node 
identifier with IP address 
and port number) in a 
“Finger table”

● Each finger k in the table is 
defined as the first node 
that succeeds the current 
node n: (n + 2^(k-1)) mod 
2^m, 1 <= k <= m.

● In the example, first finger 
of node 8 is 14, because (8 
+ 1) mod 2^6 = 9



Consistent Hashing - Scalable lookup



Nodes Joining

● This handles a stable system, but how can we extend it to allow new nodes to join?
○ Remember: each node needs to know its successor

● We need new node n to join the ring and learn its successor. How can we do this?

● We can use the find_successor operation with our node key!
○ We can call this on any other node 

Will correctness be maintained?

What else is missing?



Node Stabilization

● Nodes need to learn about other nodes
○ They need some access point into the ring – this is why they must have a successor! 

■ It doesn’t need to be right
● Asks successor about its predecessor

○ A new node may have been added in between, might need to update successor
○ Notify new successor to let it know we are the new predecessor (if we are actually right!)

What else should we update?

Is correctness maintained?



Fixing “Fingers”

● Nodes need to update their finger tables

● Note: only updates 1 finger at a time!



Node Failure

● What happens if a predecessor fails?

● What happens if a successor fails?



Successor Failure

● Nodes maintain a list of successors.
○ If immediate successor does not respond, assumes that it is unreachable/down and use the 

second entry
● Must reconcile this list with its successor’s successor list

○ Node n’s list: [n1, n2, n3]
○ Node n2’s list: [n3, n4, n5]
○ If n cannot reach n1, new successor list should be: [n2, n3, n4]

● Unlikely that all successors fail at once
● Must modify the previous operations to work with this



Recursive vs. Iterative

● Iterative: initiating node asks each node for information to reach successor

● Recursive: intermediate nodes forward request on to the next node

● Which is likely to be faster? How does this affect timeouts?



Other Optimizations

● Use virtual nodes with random identifiers to more evenly distribute nodes 
across the circle

● Use “alternative nodes” for each node in the finger table that have similar 
node keys, select the one that has the lowest latency

○ Requires recursive lookup
● Store replicas of the keys at a node in the successor nodes
● Nodes that choose to leave announce their departures



So why Chord?

● Good lookup speed despite reconfigurations



Using Lightweight Modeling To Understand Chord

● Published over 10 years after Chord
● “correctness of the ring-maintenance protocol would mean that the protocol 

can eventually repair all disruptions in the ring structure, given ample time and 
no further disruptions while it is working. It is a form of “eventual consistency” 
with respect to reachability.”

○ No published version of Chord is incorrect! (as of 2012)
○ Proves this by showing scenarios where it violates certain invariants



Using Lightweight Modeling To Understand Chord

“The first such invariant is ConnectedAppendages. Informally, it says that an 
appendage to the ring stays connected to the ring.”



Using Lightweight Modeling To Understand Chord

“The next claimed invariant is 
named AtLeastOneRing. Informally, 
it says that there is always a ring of 
members, all reachable from each 
other.”



Using Lightweight Modeling To Understand Chord

“The next claimed invariant is OrderedRing. Informally, it says that 
the ring is always ordered by identifiers.”



Using Lightweight Modeling To Understand Chord

“The final claimed invariant is AtMostOneRing. Informally, it says that the 
network does not break apart into two or more separate rings.”



Discussion

Consider a large network with significant geographical coverage. What can go wrong 
with node neighbor allocation? Can you propose a way to mitigate this issue and 
what trade-off is introduced by your solution?

● Large latency in hops – low number of hops isn’t great if each one takes a long time
● How might we address this?

○ Incorporate locality in key generation, so that geographically close nodes are 
near each other in the circle

○ Other ideas?



Discussion

Chord doesn’t inherently deal with replication of data, just distribution. How can we 
incorporate replication?

● Make each node a Paxos instance
● Let successors serve as paxos group
● Chain replication with successors
● Other ideas?


