
File Systems
Jiacheng Wu and Matthew Arnold



Motivation–Technological Ecosystem

● Technological performance improvements circa 1990
○ Processor speed increasing exponentially
○ Main memory speed and size increasing exponentially
○ Disk speed not increasing as fast

● Caching
○ Absorbs read requests, expect writes to dominate disk traffic
○ Can cache large portions of data and write it all at once to optimize transfer bandwidth

● Typical use case
○ Lots of small file accesses



Motivation–Unix FFS

● Disk bandwidth underutilized on Unix FFS
○ Particularly with small files
○ Because of lots of disk I/O operations/seeks

● Synchronicity of disk operations
○ FS metadata written synchronously
○ Couples application performance to disk
○ With caching disk operations should be made asynchronous



Goals

● Improve write performance of disk
○ Particularly for small files
○ Cache writes and send them all at once to disk in single operation
○ Maximize disk utilization for actually writing

● Write to cache to may be synchronous, but write to disk asynchronous
○ Application performance no longer linked to slow disk operations



LFS–General Idea

● All data stored directly in log
○ Files temporally located vs Unix FFS, where files logically located

● Keep appending all data and organization mechanisms in log
○ Indirect blocks, inodes, etc.
○ Block “segments” memory unit of operation

● Clean segments when space more space needed



Mechanisms–Locating Files

● Use same mechanisms as Unix FFS
○ inode map→inode →(optional) indirect block→file segment(s)
○ Inode map stored in fixed memory location–checkpoint region

● More compact structure than Unix FFS
● Read operation similar number of disk operations compared to Unix FFS



Mechanisms–Disk Space Management (1)

● Data stored in segments
○ Unit that disk management techniques operate upon/reason about

● Segment size–chosen s.t. seek operation much longer than transfer time for 
reading/writing a segment

○ Attempts to maximize disk usage



Mechanisms–Disk Space Management (2)

● Log starts with large and completely free extent to write to
● What happens when you get to the end of the memory you can log to?

○ Goal: reclaim space that is no longer being used
○ Possibilities: Threading or Copying, or both

● Threading impossible because of extreme fragmentation in segments
● LFS uses combination of threading and copying

○ Thread at segment level, coalesce fragmented data to smaller number of blocks



Mechanisms–Segment Cleaning (1)

● Liveness–to clean a block you must know if data inside is still referenced
● Cleaning policies influenced by the notion of “write cost”

○ How busy disk is per byte of written data
○ Write cost inversely proportional to liveness of segment being cleaned aka utilization
○ Intuitively–if you have many segments that are mostly live, a lot of work is required to make 

room for new data
● Policies described work by cleaning segments that dropped below a particular 

utilization
○ We want utilization to be low to reduce write cost, but also don’t want to spend too much time 

cleaning
● So what cleaning policy should be chosen?

○ Greedy–clean least utilized segments
○ Cost-Benefit–clean hot segments at lower utilization than cold segments b/c free space in cold 

segments more valuable than in hot segments 



Mechanisms–Segment Cleaning (2)

Original greedy policy Cost-Benefit approach–can 
clean segments early to 

maintain desired bi-modal 
segment distribution

Cost-Benefit performs 
better than Greedy



Mechanisms–Logging for Crash Recovery

● General idea–create checkpoint, then roll forward to last checkpoint
● Similar to database system write-ahead logging, but use of log is different

○ Log viewed as “truth” about state of disk, but DBMS doesn’t use log as final location of data, 
so no cleaning mechanism needed

○ Sprite LFS reclaims space during cleaning after logging changes written to final location, 
DBMS doesn’t care about this



Claims

● Permits 65-75% of bandwidth for writing 
new data (rest time spent cleaning), vs 
Unix systems, which only utilize 5-10% of 
raw bandwidth for writing (rest spent 
seeking)

● More efficient than SunOS–10x faster for 
create, delete

○ Reading pretty much the same, aside from 
re-reading after random write due to additional 
seeking to find data

● Predicted speedup because CPU 
saturated but disk usage was low



Do you agree with the claims?



Disadvantages

Why don’t we exclusively use log-structured file systems?

Assume that caches are ever increasing/infinite

● On media where seeks take a long time, reading a fractured file would take a long 
time due to a significant amount of seeking to read something

● Doesn’t work well when disk full
● Doesn’t work well when writes are random b/c forces dead space and frequent 

cleaning
● Why not used on disks today?

○ Works well when segment cleaning done in background when file system not busy doing other stuff 
but…

○ When considering real world utilization, performance degrades significantly (40%) compared to results 
found in paper

○ Segment cleaning problem was never solved to the point where LFS was better than in-place file 
systems



LFS with SSDs

● Assumption that reads cheap and writes expensive fits into the model of flash
○ reads can be granular, but writes done in large contiguous blocks (clear block, then set 

individual bits in the block)
● It is assumed that SSDs typically have some sort of LFS-like internal to the 

system, externally a non-LFS used on top/outside of the SSD
● SSD work is private/commercialized and you can’t actually see the firmware 

manufacturers deploy on SSDs, so this is mostly guesswork/external 
observation

● They could be implementing some other data management system that 
behaves similar to LFS



Questions related to the paper

● Suppose log FSes weren’t designed in the 1990s…would motivation remain 
the same for someone to design them today?

● Are techniques from Sprite LFS used today?
○ Flash memory systems use techniques (writes expensive/done in big blocks), reads cheap

● How important is reducing fragmentation in the LFS?
○ I.e. since copy and compact is costly can we reduce how much of it we do to make LFS more 

efficient?
○ Is this dependent on the type of nonvolatile memory system being used



Modern Day File Systems



Characteristic of SSD/Flash

● SSD, most of SSD use Flash
● SSD performs random R/W well

○ It use electronic no mechanical
○ An order of magnitude than HDD 

● SSD supports simultaneous R/W
○ SATA controllers operate sequentially 
○ NVMe controller can execute parallel 

commands using multiple PCIe 
interface lanes.



Problems on SSD/Flash

● SSDs - Blocks >> Pages >> Cells
○ Data is read and written at the page level
○ But Data Erasing only be at the block level

● Will Fragmentation influence

the performance of RW on SSD?



Write Amplification on SSD/Flash

● SSDs - Blocks >> Pages >> Cells
○ Data is read and written at the page level
○ But Data Erasing only be at the block level

● Append on SSD is just page level
● Update on SSD is the block level

○ Once you need update a page/cell
○ First copy whole block to buffer
○ Erase the whole block
○ Move backup with updated to block

● Cell has limited times to write/erase
○ Write Amplification reduce the life of SSD



F2FS - Flash Storage [Lee et al. FAST15]
● Based on LFS

○ Considering If the characteristic of Flash
○ Radom Write -> ↑ Fragmentation, ↓ Performance 

● Flash-Friendly Layout
○ Segment (cleaning units), Section, Zone

● Multi-Head Logging
○ Leverage Flash Parallelism 
○ Multiple active logging segments

● Adaptive Logging
○ Write new data in free space of dirty seg
○ Thread Logging at high utilization



Non-Volatile Memory

● Just behave as memory 
○ Byte-addressable
○ High performance for R/W
○ Processor directly access by PCIE 
○ But is non volatile

● To enforce the data stored on NVM
○ Write to the NVM address range
○ Flush the Cache (CLWB)
○ Add Memory Barrier (SFENCE)

● Intel Octane NVM
○ Phase Change Memory
○ No Write Amplification!!



Discussion

● What problems might be traditional file system on NVM
○ Just like all data fits into the whole memory?
○ But some part of memory is non-volatile

● Is necessary to Log Data in NVM File System?



NOVA - Hybrid V/NV Memory [Xu et al. FAST16]

● Challenges
○ Managing, Accessing NVM
○ Maintaining Consistency

■ CPU reorder stores/Memory Cache
■ Maintain are costly 

● Adapt LSFS to fast random write
○ Index in DRAM, Logs in NVM 
○ Separate Log for each node (Concurrency)

■ Store Log as link list
■ Lightweight journing for atomic 

○ Store file data outside log 
■ Recovery is fast
■ GC is fast
■ Do not log data

● Keep Complex DS in DRAM
○ Provide (meta)data atomicity



NOVA - Hybrid V/NV Memory [Xu et al. FAST16]

●



SplitFS - Persistent Memory [Kadekoli et al. SOSP19]

● Problem: Software Overhead
○ Allocation, Logging and Updating Metadata
○ The Overhead is >= 80%

● Main Idea: Split
○ Userspace FS -> data ops
○ Kernel PM FS(ext4 DAX) -> metadata ops

● UserSpace for Read/Overwrite
○ Intercept POSIX calls
○ Map memory to underlie files
○ FS R/W -> Processors Loads/Stores

● Kernel for Meta/Append/Atomic Data Ops
○ Relink primitive optimizations

https://github.com/utsaslab/splitfs



KucoFS - Kernel 
Userspace Collaboration 
[Chen et al. FAST21]

● Main Goal: Scalability
○ Kernel Ops is not scalable
○ VFS layer, Centralized Components

● Offload time-consuming Tasks
○ PathName resolution / CC
○ From Kernel to Space
○ Using 3 techniques

■ Collaborative Index (Ulib/KFS)
■ Two-Level Locking 
■ Version Reads



ctFS - Hardware Memory 
Translation [Li et al. FAST22]

● Motivation
○ Costly Block Address Lookup
○ Build/Update Complex Index 
○ File Offsets -> PM address (> 50%)

● Contiguous File System
○ Files <- contiguous Virtual Memory
○ Offsets is Offsets !!!
○ Leverage just Hardware MMU
○ No Software Maintained Index

● Challenge:
○ How files are allocated
○ How resizing is managed



ctFS - Hardware Memory 
Translation [Li et al. FAST22]

1.



Discussion

1. SSDs: General consensus in LFS is a good starting point
● Writing chunks of data ideal, so don’t want too much fragmentation
● How do we address wearing issue?

2. Tape: locality important (logical locality, probably not temporal locality)
● Preprocessing important and OK to take a long time doing this

3. In-Flight Network: (Store the data on the LINK!!)
● ?? Consensus and Synchronization between Disk and Network IO
● High latency to access data, somewhat nonvolatile and potentially high 

message loss, need robustness 
4. Disk fits in memory: reads are “free” and writes asynchronous, which fits 

LFS model
● Lots of writes in the background to minimize CPU usage



ANY QUESTIONS?


