File Systems
Jiacheng Wu and Matthew Arnold



Motivation—Technological Ecosystem

e Technological performance improvements circa 1990

o Processor speed increasing exponentially

o Main memory speed and size increasing exponentially

o Disk speed not increasing as fast
e Caching

o Absorbs read requests, expect writes to dominate disk traffic

o Can cache large portions of data and write it all at once to optimize transfer bandwidth
e Typical use case

o Lots of small file accesses



Motivation—Unix FFS

e Disk bandwidth underutilized on Unix FFS

o Particularly with small files
o Because of lots of disk I/0O operations/seeks

e Synchronicity of disk operations
o FS metadata written synchronously

o Couples application performance to disk
o  With caching disk operations should be made asynchronous



Goals

e Improve write performance of disk
o Particularly for small files
o Cache writes and send them all at once to disk in single operation
o Maximize disk utilization for actually writing
e \Write to cache to may be synchronous, but write to disk asynchronous
o Application performance no longer linked to slow disk operations



LFS—General Idea

e All data stored directly in log

o Files temporally located vs Unix FFS, where files logically located
e Keep appending all data and organization mechanisms in log

o Indirect blocks, inodes, etc.
o Block “segments” memory unit of operation

e Clean segments when space more space needed

dirl dir2 filel

file2

Log —» Disk

Disk

dirl

Sprite LFS

Block key:

Inode l Directory I:| Data D Inode map

dir2

Unix FFS



Mechanisms—Locating Files

e Use same mechanisms as Unix FFS
o inode map—inode —(optional) indirect block—file segment(s)
o Inode map stored in fixed memory location—checkpoint region

e More compact structure than Unix FFS
e Read operation similar number of disk operations compared to Unix FFS

dirl dir2 filel file2

Disk

o (W | e Disk !

Unix FFS

7 . O 7 &
u U Sprite LFS dicl i

Block key: Inode I Directory l:| Data I:l Inode map



Mechanisms—Disk Space Management (1)

e Data stored in segments
o Unit that disk management techniques operate upon/reason about

e Segment size—chosen s.t. seek operation much longer than transfer time for

reading/writing a segment
o Attempts to maximize disk usage



Mechanisms—Disk Space Management (2)

e Log starts with large and completely free extent to write to

e \What happens when you get to the end of the memory you can log to?
o Goal: reclaim space that is no longer being used
o Possibilities: Threading or Copying, or both

e Threading impossible because of extreme fragmentation in segments

e LFS uses combination of threading and copying
o Thread at segment level, coalesce fragmented data to smaller number of blocks

Block Key: Threaded log Copy and Compact
7] Old log end New log end Old log end New log end
Old data block
New data block
Previously deleted




Mechanisms—Segment Cleaning (1)

e Liveness—to clean a block you must know if data inside is still referenced

e Cleaning policies influenced by the notion of “write cost”
o How busy disk is per byte of written data
o  Write cost inversely proportional to liveness of segment being cleaned aka utilization
o Intuitively—if you have many segments that are mostly live, a lot of work is required to make
room for new data

e Policies described work by cleaning segments that dropped below a particular

utilization
o  We want utilization to be low to reduce write cost, but also don’t want to spend too much time
cleaning

e So what cleaning policy should be chosen?
o Greedy—clean least utilized segments
o Cost-Benefit—clean hot segments at lower utilization than cold segments b/c free space in cold
segments more valuable than in hot segments



Mechanisms—Segment Cleaning (2)

Fraction of segments _ _
0.008 ¢ . o ;
0.007 -
0.006 -
0.005 -~
0.004 -~
0.003 -~
0.002 -
0.001 -
0.000

| Uniform

00 02 04 06 08 1.0
Segment utilization

Original greedy policy

Hot-and-cold

Fraction of segments
0.007 -
0.006
0.005 -
0.004
0.003 -
0.002
0.001 -
0.000 : : i i
00 02 04 06 08 1.0
Segment utilization

LFS Cost-Benefit

i LFS Greedy

+

Cost-Benefit approach—can

clean segments early to
maintain desired bi-modal
segment distribution

Write cost

140 " No variance
= LFS Gresdy
U T FFStoday
8.0~ =
6.0 " LFS Cost-Benefit
40 "~ EES aproved
2.0 =
0.0

00 02 04 06 08 10

Disk capacity utilization

Cost-Benefit performs
better than Greedy



Mechanisms—Logging for Crash Recovery

e (General idea—create checkpoint, then roll forward to last checkpoint
e Similar to database system write-ahead logging, but use of log is different

(@)

Log viewed as “truth” about state of disk, but DBMS doesn’t use log as final location of data,

S0 no cleaning mechanism needed
Sprite LFS reclaims space during cleaning after logging changes written to final location,
DBMS doesn’t care about this



Key: D Sprite LFS D SunOS

18I;)iles/sec (measured) 6_;"Siles/sec (predicted)
Claims ool o5 -
120 450
100 e 375
e Permits 65-75% of bandwidth for writing s =l o
new data (rest time spent cleaning), vs “ ——
Unix systems, which only utilize 5-10% of o e i 0 M
raw bandwidth for writing (rest spent el i
Seeklng)_ . Figure 8 — Small-file performance under Sprite LFS and
e More efficient than SunOS-10x faster for s,
create, delete .
’ cilobvtes/s Sprite LFS SunOS
o Reading pretty much the same, aside from Ugsgte s I:I i [l N
re-reading after random write due to additional =00 | 1o s
seeking to find data 600 e
e Predicted speedup because CPU o ST :
. 300
saturated but disk usage was low 200 =
0

Write Read Write Read Reread
Sequential Random Sequential

Figure 9 — Large-file performance under Sprite LFS and
SunOS.



0 you agree with the claims?



Disadvantages

Why don’t we exclusively use log-structured file systems?

Assume that caches are ever increasing/infinite

On media where seeks take a long time, reading a fractured file would take a long
time due to a significant amount of seeking to read something

Doesn’t work well when disk full

Doesn’t work well when writes are random b/c forces dead space and frequent
cleaning

Why not used on disks today?

o  Works well when segment cleaning done in background when file system not busy doing other stuff
but...

o  When considering real world utilization, performance degrades significantly (40%) compared to results
found in paper

o  Segment cleaning problem was never solved to the point where LFS was better than in-place file
systems



LFS with SSDs

e Assumption that reads cheap and writes expensive fits into the model of flash
o reads can be granular, but writes done in large contiguous blocks (clear block, then set
individual bits in the block)
e |tis assumed that SSDs typically have some sort of LFS-like internal to the

system, externally a non-LFS used on top/outside of the SSD

e SSD work is private/commercialized and you can’t actually see the firmware
manufacturers deploy on SSDs, so this is mostly guesswork/external
observation

e They could be implementing some other data management system that
behaves similar to LFS



Questions related to the paper

e Suppose log FSes weren’t designed in the 1990s...would motivation remain

the same for someone to design them today?

e Are techniques from Sprite LFS used today?
o Flash memory systems use techniques (writes expensive/done in big blocks), reads cheap

e How important is reducing fragmentation in the LFS?
o l.e. since copy and compact is costly can we reduce how much of it we do to make LFS more

efficient?
o Is this dependent on the type of nonvolatile memory system being used



Modern Day File Systems



Characteristic of SSD/Flash

e SSD, most of SSD use Flash
e SSD performs random R/W well

o It use electronic no mechanical
o  An order of magnitude than HDD

e SSD supports simultaneous R/W

o  SATA controllers operate sequentially

o NVMe controller can execute parallel
commands using multiple PCle
interface lanes.

Platters

Spindle

R/W Head

Actuator Arm

Actuator Axis

Actuator

Shock resistant up to 559 (operating)
Shock resistant up to 350g (non-operating)

Shock resistant up to 1500g
(operating and non-operating)

Cache

Controller

NAND Flash Memory



Problems on SSD/Flash

e SSDs - Blocks >> Pages >> Cells

o Data is read and written at the page level
o But Data Erasing only be at the block level

e Will Fragmentation influence

the performance of RW on SSD?

512KB Block

Block With Pages Written
and Pages Available to be
Overwritten

512KB Block 512KB Block

Block with 100% Free Block with Some Pages
Pages Written



Write Amplification on SSD/Flash

e SSDs - Blocks >> Pages >> Cells
o Data is read and written at the page level
o But Data Erasing only be at the block level

e Append on SSD is just page level
e Update on SSD is the block level

o Once you need update a page/cell
o First copy whole block to buffer

o Erase the whole block

o Move backup with updated to block

e Cell has limited times to write/erase
o  Write Amplification reduce the life of SSD

512KB Block

Block With Pages Written
and Pages Available to be
Overwritten

512KB Block 512KB Block

Block with 100% Free Block with Some Pages
Pages Written



F2FS - Flash Storage [Lee etal. FAsT15]

e BasedonlLFS
o  Considering If the characteristic of Flash
o  Radom Write -> 1 Fragmentation, | Performance
e Flash-Friendly Layout
o  Segment (cleaning units), Section, Zone
e Multi-Head Logging
o Leverage Flash Parallelism
o  Multiple active logging segments
e Adaptive Logging

o  Write new data in free space of dirty seg
o  Thread Logging at high utilization

Inode block

Metadata

D Data

D Direct node
D Indirect node

direct pointers
or =

inline data

Inline xattrs

Single-indirect

Double-indirect

Triple-indirect

Figure 2:

Multi-stream Sequential Writes

CJ CJ

ol ...J i
e

File structure of F2FS.

»

< Random Writes

>4

| Zone | Zone | Zone | Zone |
| Section | Section | Section | Section | Section | Section | Section | Section |
Segment Number S O o T e e e o e
Superl;:oct #0 j Check |Segment Info. | Node Address | Segment Summary Main Area
SupeiRioakEl point Table Table Area D D i I D
(CP) (SIT) (NAT) (SSA) | T
v v v
Sector #0
Hot/Warm/Cold Hot/Warm/Cold

Node segments

Data segments



Non-Volatile Memory

e Just behave as memory
o Byte-addressable
o High performance for R/W
o Processor directly access by PCIE
o Butis non volatile

e To enforce the data stored on NVM

o  Write to the NVM address range
o  Flush the Cache (CLWB)
o Add Memory Barrier (SFENCE) Processor

e |[ntel Octane NVM

o Phase Change Memory
o  No Write Amplification!!

N

b

NVM

4




Discussion

e \What problems might be traditional file system on NVM

o Just like all data fits into the whole memory?
o But some part of memory is non-volatile

e Is necessary to Log Data in NVM File System?



NOVA - Hybrid V/INV Memory ixu etal. FasT16]

Challenges

Managing, Accessing NVM

Maintaining Consistency

CPU reorder stores/Memory Cache
Maintain are costly

Adapt LSFS to fast random write

Index in DRAM, Logs in NVM

Separate Log for each node (Concurrency)
Store Log as link list

Lightweight journing for atomic
Store file data outside log

Recovery is fast

(@]
(@]

O
O

O

O

GC is fast

Do not log data
Keep Complex DS in DRAM
Provide (meta)data atomicity

CPU 1 CPU 2 CPU 3 CPU 4
(T T T T ] ! A | (T T T T ] (T ]
: Freelist | } Freelist | : Freelist | : Freelist |
So| (Sl isblich
__D_R_Alv'__il ______ :__IL _____ _||_JI ______ L_Jl_ _____ 1
NVMM | [Gounar] | | [Journar] | | [Journal] | | [Journal] |
| | | |
Super | Inode table: | Inode table: | Inode tablel | Inode tablel
block | |[MmmM, |[Oml, |, |\
Recovery | —————~ o M,
inode

Inode |-'-Head | Tail‘.l

Inode log |——>| I——-|
|:| Committed log entry o] Uncommitted log entry

Figure 1: NOVA data structure layout. NOVA has per-CPU free
lists, journals and inode tables to ensure good scalability. Each
inode has a separate log consisting of a singly linked list of 4 KB log
pages; the tail pointer in the inode points to the latest committed
entry in the log.

v




NOVA - Hybrid V/INV Memory ixu etal. FasT16]

[
300 Fileserver

=) |3 Btrfs E= Ext4-data 10— (©) NOVA Ia.tency,breakqown .
g 250 = NILFS2 =23 Ext4-DAX | o) [ NOVA [Z1 PCOMMIT
> EEN F2FS  EEA PMFS S sl B VFS BN Memcpy
> 200 Ext4 [ NOVA | b
S 150 § 6
O
o 9
» 100 E 4l
Q
g o
50 <
o 8 2

0 J y S

STTRAM-small STTRAM-large PCM-small PCM-large 0 . )

1 1 1 1
STT-RAM  PCM STT-RAM  PCM STT-RAM PCM
Create Create Append Append Delete Delete



SplitFS - Persistent Memory kadekoli et al. s0sP19]

Problem: Software Overhead

o  Allocation, Logging and Updating Metadata

o  The Overhead is >= 80%
Main ldea: Split

o Userspace FS -> data ops

o  Kernel PM FS(ext4 DAX) -> metadata ops
UserSpace for Read/Overwrite

o Intercept POSIX calls

o  Map memory to underlie files

o FS R/W -> Processors Loads/Stores

Kernel for Meta/Append/Atomic Data Ops

o  Relink primitive optimizations

https://github.com/utsaslab/splitfs

Technique Benefit

Split architecture Low-overhead data operations,
correct metadata operations

Collection of memory-mmaps Low-overhead data operations in
the presence of updates and ap-
pends

Relink + Staging Optimized appends, atomic data
operations, low write amplifica-
tion

Optimized operation logging  Atomic operations, low write am-
plification

Table 4. Techniques. The table lists each main technique
used in SpLITFS along with the benefit it provides. The tech-
niques work together to enable SpLITES to provide strong
guarantees at low software overhead.



KucoFS - Kernel

Userspace Collaboration
[Chen et al. FAST21]

e Main Goal: Scalability
o Kernel Ops is not scalable
o VFS layer, Centralized Components
e Offload time-consuming Tasks
o PathName resolution / CC
o From Kernel to Space
o Using 3 techniques
m Collaborative Index (Ulib/KFS)
m Two-Level Locking
m Version Reads

| Application I_l

o o 2
open() regd() write() unlipk()

2

\

Me;a request

'
User
Index
Msg Buf j— = query —\Lec_sefgge—(j—. erte map ______
\ p Poll [ Page A ] Kernel
Partition tree Leases

Figure 2: The Kuco architecture. metadata updates (D-@): Ulib
interacts with Kfs via collaborative indexing; read: direct access via
versioned read; write: direct access based on a three-phase write
protocol and two-level locking for concurrency control.

: inode ey | | T T 1 .- User:Bob |

' table :

E creat(/Bob/a) ]

]

E DRAM node I:lj q IEOQ Dentry List :

]

l k LogEntry:

: Block | |_>—>

E mapping |_ : -I>| |-> Op: Zrea;e

! - inode:

T T C| ;e-f.'k-p:l:t--7a-//;; -------- p_inode: 7
_— Append | name: o

]
]
' NVM
' Data pages Metadata pages  Operation log | Attr: ..

Figure 6: Data layout of a partition tree in KucoFS. creat
operation with three steps is also shown.




ctFS - Hardware Memory
Translation [Liet al. FasT22]

e Motivation

o Costly Block Address Lookup

o Build/Update Complex Index

o File Offsets -> PM address (> 50%)
e Contiguous File System

o Files <- contiguous Virtual Memory
Offsets is Offsets !!

o Leverage just Hardware MMU

o No Software Maintained Index
e Challenge:

o How files are allocated

o How resizing is managed

O

Virtual address space ctU

Parjilion 1 Partition 2

kernel Populate/

E:-;’ invalidate

A
_— =

%ﬁ Page fault

DRAM page table

Figure 2: Architecture of ctFS. Each box represents a page.
Two partitions are shown. The file allocated in partition 1 uses
3 pages (green), and the file in partition 2 uses 5 pages. ctK
maintains virtual-to-physical page mappings in the PPT.

L9 18 L7 L6 | LS L4 L3 | L2 L] LD
512GB|64GB 8GB 1GB |128MB 16MB 2MB|256KB 32KB 4KB

PGD PUD PMD PTE (sub-PMD)

Figure 3: Size of partitions at levels L0 to L9. PGD, PUD,
PMD, and PTE refer to the four levels of page tables in Linux
(from highest to lowest). An L9 partition aligns with PGD, i.e.,
its starting address has zero in all of the lower level page tables
(PUD, PMD, PTE); Similarly, L6-L8 partitions align with PUD,
whereas L3-L5 partitions align with PMD.



read (fd, buf, size)

ctFS - Hardware Memory e T

. inode +—> target
Translation [Liet al. FAsT22] Metadata T | |
[ memcpy (buf, target, size)

1

Super inode Level 9 Partition

block bitmap inodes ; - R SRR
1 S I I N S
P
77
PSR o
/
PV ST
7 7
77

: I . [ Alocated
Level« /[T

-

2o L] Empty
Level3l! . . . |
E! .:I & e A B Header

Level 2 Level 1 Level O

Figure 4: Layout of ctFS in the virfual address space (VAS). The space of an entire partition is reserved in VAS, whereas the
physical PM space is allocated on-demand based on actual usage. Headers circled in the dashed-line reside on the same page.



Discussion

1. SSDs: General consensus in LFS is a good starting point
e \Writing chunks of data ideal, so don’t want too much fragmentation
e How do we address wearing issue?

2. Tape: locality important (logical locality, probably not temporal locality)

e Preprocessing important and OK to take a long time doing this
3. In-Flight Network: (Store the data on the LINK!!)

e 77 Consensus and Synchronization between Disk and Network IO

e High latency to access data, somewhat nonvolatile and potentially high
message loss, need robustness

4. Disk fits in memory: reads are “free” and writes asynchronous, which fits
LFS model

e Lots of writes in the background to minimize CPU usage



ANY QUESTIONS?



