CSE 550: Systems for all

Au 2022

Ratul Mahajan

Concurrency control thus far

We learned how to enable concurrent read/write to a shared resource

- E.g., Locking [Mesa]
- If there are multiple resources, they are independent from the system's perspective

Haven't learned yet how to enable concurrent read/write to multiple related resources

• E.g., two related values in a DB

Strawmen solutions to related data

- 1. Lock everything
 - Too slow
- 2. Clients lock what they read/write (relationships hidden from the system)
 - Impossible to recover if they client crashes midway

Transaction

Unit of execution that read/writes one or more data items

- System is aware of work done as part of the transaction
- Goal is to make transactions atomic all or nothing

Faults thus far

Replication faults

Replicas may disagree because of "natural" faults or attacks

But faults are not only about replication

- Must minimize the probability of data corruption in non-replicated systems?
 - Related data items left in an inconsistent state is corruption
 - E.g., during money transfer, withdraw is processed but deposit is not
- Also recall that handling replication faults assumed that each node has stable storage

Next two lectures

Concurrency control and recovery

- Today: all data on one computer
- Monday: data on multiple computers

The DB community has done the heavy lift here on these topics but the utility is not limited to databases

On "consistency"

Consistency means different things to different people

Databases: Data integrity

Distributed systems: Semantics in the face of multiple readers/writers

- Multiple models: Strict, causal, eventual

Over to Oliver and Winston