
Concurrency Control and
Recovery

Oliver Flatt and Winston Jodjana

DBMS Overview

DataBase Management System

Goals

1. Protect the data in the database
2. Query of the data correctly despite concurrent access and failures

Core components to achieve these goals

1. Concurrency Control
2. Recovery

Transactions

Ratul covered this.

● Main principal: ACID
○ Atomicity - "All or nothing"
○ Consistency - Any changes maintains constraints
○ Isolation - Each transaction if they ran alone
○ Durability - After COMMIT, survives failures

Example of a Transaction

BEGIN

UPDATE accounts SET balance = balance - 50 WHERE id = 1;

UPDATE accounts SET balance = balance + 50 WHERE id = 2;

COMMIT;

1. Concurrency Control (i.e. the "I")

Serializability - a schedule is said to be serializable if and only if it is equivalent to
some serial schedule

Equivalance - same operations, same ordering of conflicting operations

Serial schedule - operations appear consecutively

Provides guaranteed complete Isolation

Expensive and difficult in practice

1. Concurrency Control (cont.)

Conflict Serializability - a schedule is said to be conflict serializable if and only if it
can be transformed into a serial schedule by swapping non-conflicting operations.

Conflict operations - 2 inter-transaction operations that operate on the same
data where one of them is a write operation

Implies Serializability

Simpler and cheaper

(e.g. Cycle in precedence graph = abort and retry)

1.1 Pessimistic Solution: Two Phase Locking (2PL)

Locks are a common concurrency control strategy

Two types of locks - Shared and Exclusive

 (For reads) (For writes)

In 2PL, in every transaction, all acquires must happen before release

Acquire Phase -> Release Phase

(Growing) (Shrinking)

2PL guarantees conflict serializability

1.2 2PL Deadlocks

When different transactions block on each other and can’t make progress

Deadlock = Cycle in precedence graph on lock

1. Periodically run cycle detection
2. If cycle detected,

a. Rollback transaction(s)
b. (Hopefully) make progress
c. Retry the rolled back transaction(s)

2PL also has problems with recoverability -> Solution is Strict 2PL

1.3 Common Concurrency Control Problems

● Non-Atomic Operations
● Lost Update
● Dirty/Inconsistent Read
● Unrepeatable Read
● Phantom Read

1.3 Example: Phantom Read

Same query produces different (unexpected) results within a transaction

e.g.

Violates Isolation

Thread 1 Thread 2

read(x) # 100

update(x, 200)

read(x) # 200

1.4 Isolation Levels

READ UNCOMMITED

READ COMMITED

REPEATABLE READ

SERIALIZABLE

SNAPSHOT ISOLATION (MVCC)

1.5 Optimistic Concurrency Control

● Assume schedule is serializable
● If conflict, abort
● Workloads with low levels of contention

Some Solutions

● Timestamping
○ The timestamp order defines the serialization order of the transaction

● Validation
○ Read Phase, Validate Phase, Write Phase

● Snapshot Isolation
○ Combines techniques: Timestamps, Multiversion, Validation

2. Fault Tolerance: Recovery (i.e. the "A" and "D")

How to deal with crashes that can happen at any moment? How about corrupted
data?

Two important operations:

● Undo
○ Removing the effects of an incomplete or aborted transaction

● Redo
○ Reinstating the effects of a committed transaction

ARIES: Page-oriented REDO-logical UNDO log

Strategies for Recovery

STEAL-
allowed to mutate storage during transaction

NO-STEAL-
not allowed to mutate actual
storage until transaction finishes

NO-FORCE-
don’t need to finish
writing transaction to
commit

FORCE-
ensure all updates
are in storage before
commit

Strategies for Recovery

STEAL-
allowed to mutate storage during transaction

NO-STEAL-
not allowed to mutate actual
storage until transaction finishes

NO-FORCE-
don’t need to finish
writing transaction to
commit

Good performance, difficult recovery Write all of the transaction after
it’s been committed

FORCE-
ensure all updates
are in storage before
commit

Write all the transactions to storage, then
commit

Bad performance, easy
recovery

Need detailed log

Logging

Data page:
Data1 = 0
Data2 = 3
Data3 = 10
Log number -> 0

Log:

Logging

Data page:
Data1 = 0
Data2 = 3
Data3 = 11 - updated!
Log number -> 4

Log:

Log Sequence Number: 4
Updated Data3 which had value 10

What needs to be logged?

For STEAL? For NO-FORCE?

What needs to be logged?

For STEAL?

- The previous values for anything
overwritten

For NO-FORCE?

What needs to be logged?

For STEAL?

- The previous values for anything
overwritten

For NO-FORCE?

- The new values that still need to be
written

What needs to be logged?

For STEAL?

- The previous values for anything
overwritten

For NO-FORCE?

- The new values that still need to be
written

Logical logging involves logging a more complex operation that requires
multiple low-level writes

Example: Insert a tuple into a database, requiring updating the database index
among other operations

Hierarchical locking

How many locks do I need?

Page1 Page1

Hierarchical locking

How many locks do I need?

3 locks for the green transaction, 2 locks for the red transaction

All through the lock manager!

Page1 Page1

Hierarchical locking

Could lock the whole page, but that’s worse in this case:

Page1 Page1

Hierarchical Locking

- Specify intent on what you want to do to a page
- Read page, write page, or acquire more fine grained permissions

- Can perform runtime analysis to determine a policy
- Ex: Transaction 3 always acquires a lot of locks in this page, so

just give it a lock on the entire page

Degrees of Isolation

READ UNCOMMITTED- No guarantee about reads,
doesn’t even get read locks!

READ COMMITTED- Guarantees that values read
are from committed transactions

REPEATABLE READ- Reading data items will result
in the same value during the transactions (holds
read locks for long duration of transaction)

SERIALIZABLE- All locks are long duration, also
solves phantom problem

Stronger
Guarantee

READ COMMITTED is commonly used

But what does this mean for your actually running program?

“Despite the ubiquity of weak isolation, I haven’t found a database architect,
researcher, or user who’s been able to offer an explanation of when, and, probably
more importantly, why isolation models such as Read Committed are sufficient for
correct execution. ... I don’t think we have any real understanding of how so many
applications are seemingly (!?) okay running under them.”

http://www.bailis.org/blog/understanding-weak-isolation-is-a-serious-problem/

