
CSE 550: Systems for all 
Au 2022

Ratul Mahajan



What is SDN?

Not quite “software-defined”
• Network control planes were always software defined

Not quite “centralized control”

Separation of control and data planes
• Enables centralization but not centralization is not prerequisite



Why separate control and data plane?

Arbitrary control over how packets are forwarded
• Complex requirements can be hard to specify as distributed, local rules

• Suppose you want all paths in the network to be of length 10

Efficiency



Traffic engineering case study



Traffic engineering journey

1. SPF with static cost
2. SPF with load-based cost – BAD! 
3. CSPF (used in MPLS)
4. SDN



Limitations of static-cost SPF

A

B C D

E

FGH



Limitations of SPF with load-based costs

A

B C D

E

FGH

A

B C D

E

FGH

Increase cost of C-G

Decrease cost of C-G



CSPF

Each ingress router measure traffic that it is sending to other routers

Ingress router finds paths that can accommodate its traffic
• Shortest path that meets the capacity constraint (CSPF)

Ingress router asks other routers if they can use the path
• Necessary because all ingress routers are operating independently



Possible solution with CSPF

A

B C D

E

FGH



But CSPF has issues too

Local, greedy allocation
(Distributed CSPF)

A

B C D

E

FGH

B C D

FGH

A E

Globally optimal allocation
(Centralized)



SWAN: SDN based TE



Inter-DC WAN: A critical, expensive resource

Hong Kong

Seoul

Seattle

Los Angeles

New York

Miami

Dublin

Barcelona

But it was being used highly inefficiently



Inefficiency of the inter-DC WAN

Normalized traffic on a busy link between data centers

1
0.8
0.6
0.4
0.2

0
0 4 8 12 16 20 24

Hours of the day

Average utilization = 46%

N
or

m
al

ize
d 

th
ro

ug
hp

ut



Root cause: Service-level allocations

Operators configure individual services with maximum sending rate

S1 S2 S3 …..
SEA à NYC (80) 10 15 5 ….
SEA à CHI (100) 20 20 10 ….

……

Inefficient: The combined maximum is uncommon
Unreliable: Load can exceed capacity when failures occur
Slow to change: Must change all allocations to add services or network links



Centralized control can increase efficiency
1

0.8
0.6
0.4
0.2
0

1
0.8
0.6
0.4
0.2
0
1

0.8
0.6
0.4
0.2
0

Average utilization = 46%Service 1 
§ Priority: Bg
§ Weight: 1

Service 2 
§ Priority: Bg
§ Weight: 2

Service 3 
§ Priority: Non-bg
§ Weight: 1

……



Controller
SWAN

WANServices

Service 1 
§ Priority: Bg
§ Weight: 1
…..

Traffic demand à ß Topology
1 1

Service allocations
Network configuration

2
3 3



Challenge: Congestion during network updates

Link capacity: 10
Flow size: 6.6



Solution: Congestion-free update plans

Link capacity: 10
Flow size: 6.6



Leave scratch capacity 𝑠 on each link
§ Guarantees a plan with at most !

"
− 1 steps

Find a plan with minimum number of steps using an LP
§ Search for a feasible plan with 1, 2, …. max steps

Use scratch capacity for background traffic
§ Bound its experienced congestion

Computing congestion-free update plans



Efficiency improvement with SWAN

SWANSWAN

1

0.8

0.6

0.4

0.2
0

Throughput
(relative to optimal)



Why not centralized traffic engineering?

Robustness (recall the first design goal of the internet)
• Controller failure (topic of next class)
• Communication failure

Scalability: Eventually need to distribute in some manner

Reaction time to some types of events
• On the other hand, convergence issues with distributed routing means that it 

too can be slow for some types of events



Can you implement any packet forwarding 
behavior with SDN?
No
• Example: Add 10 bytes to the packet at every hop

We haven’t fundamentally changed the data plane behavior
• We just changed where the control planes runs and how data plane is 

configured



Programmable data planes 
Take 1: Active networking
Packet forwarding uses a program
• The program could be carried by the packet itself

Good idea?

+ Most flexible 
- Performance concerns



Programmable data planes 
Take 2: PISA
PISA: Protocol independent switch architecture (originally called RMT 
reconfigurable match tables)

P4: A language to program such data planes



PISA cannot do everything

Not Turing complete

Examples of things not possible
• Schedule packets
• Manipulate payloads
• Manipulate state programmatically

Attempts a balance between high performance and flexibility



Network virtualization

Hardware virtualization abstracts away the hardware from the operating system

Network virtualization abstracts away the physical network from the network stack
• Can run multiple virtual networks on the same physical network
• Can pretend to be a different network (e.g., pretend that all hosts are directly connected)

Works by intercepting and manipulating network packets



Network virtualization example

Host1 Host2

10.10.10.1 10.10.10.2

10.10.10.1 à 10.10.10.2 10.10.10.1 à 10.10.10.2

10.10.10.1 à 10.10.10.2 1.1.1.1 à 2.2.2.2 10.10.10.1 à 10.10.10.2 1.1.1.1 à 2.2.2.2



SDN and network virtualization

Not the same thing though often confused

SDN enables network virtualization
• Would be pretty hard to implement virtual networks if the control plane was 

co-located with data plane



Key takeaways

SDN: Separation of control and data plane

SDN use cases
• Easier implementation of policies (4D)
• Efficiency (e.g., SWAN) 
• Network virtualization (e.g., cloud networks)

Data plane programmability via PISA is an area of active investigation


