
Distributed Computation
CSE 550: Systems for All

Autumn 2022

Lequn Chen

Project Proposal

● You decide topics
○ E.g., design and building a system, measurement study, overhead analysis, …
○ Some ideas: here

● Proposal
○ Due: Oct 24 (next Monday)
○ 1-2 page PDF (no formatting requirements)

● Please include the following:
○ The problem
○ Proposed solution
○ Necessary context, tools, libraries and resources you would use in the process.
○ Timeline and Checkpoints

https://docs.google.com/document/d/1fywM2fCnUuMcN3rk9c3zdHcKdWxsmj8Yu-ZxI3eAmOk/edit?usp=sharing

Distributed Systems are everywhere!

● Some of the most powerful services are powered using distributed systems
○ systems that span the world,
○ serve billions of users,
○ and are always up!

● … but also pose some of the hardest CS problems

What is a distributed system?

● Multiple interconnected computers that cooperate to provide some service
● What are some examples of distributed systems?

Why distributed systems?

● Higher capacity and performance
● Geographical distribution
● Build reliable, always-on systems

How is a distributed system different from a single machine?

● “machine”: computation + storage + communication
● Can a multicore machine be called a “distributed system?”

“Fallacies of distributed computing”

(by L Peter Deutsch)

● The network is reliable;
● Latency is zero;
● Bandwidth is infinite;
● The network is secure;
● Topology doesn't change;
● There is one administrator;
● Transport cost is zero;
● The network is homogeneous.

Difference to single machine

● Network
○ Slower latency; Lower bandwidth;
○ Packet might get lost
○ No upper bound on delay

● Storage: message passing vs shared-memory
● Failure: Components can fail
● Clock: Unsynchronized clocks (No upper bound on drift)
● Uncertainties!!!

○ Is the packet lost? Is the network slow or disconnected?
○ Is the primary node down? Should I become the new primary? Do other nodes know that I

become the new primary?

What are the challenges in building distributed systems?

● (Partial) List of Challenges
○ Fault tolerance (different failure models, different types of failures)
○ Unsynchronized clocks and ordering events
○ Consistency/correctness of distributed state
○ Performance
○ Scaling
○ Security
○ System design, architecture, testing

● We want to build distributed systems to be more scalable, and more reliable.
● But it’s easy to make a distributed system that’s less performant and less

reliable than a centralized one!

Clocks & Events

● Why do we need clocks?
● Why do we need to order events in a distributed system?

Distributed Build System

● Distributed file servers holds source and object files
● Clients specify modification time on uploaded files
● Use timestamps to decide what needs to be rebuilt

○ if output object O depends on source file S, and
○ O.time < S.time, rebuild O

● What can go wrong?

Another example

● On social networking site
○ Remove boss as friend
○ Post: “My boss is the worst, I need a new job!”, visible to friends only

● Social networking site is a distributed system
○ Friendship links, posts, privacy settings stored across a large number of distributed servers
○ lots of copies of data: replicas, caches, cross datacenter replication, etc.

● Don’t want to get a concurrent read to see the wrong order!

Clocks

● Synchronized clocks
○ What are the sources of inaccuracy?
○ Why is it hard impossible to synchronize clocks?
○ How would you synchronize clocks?

■ Broadcast?
■ Ask?

○ What are the certainties that you want to get from synchronized clocks?
○ What about blockchains?

● Logical clocks
○ “Counters”; no real physical clocks are needed.
○ Capture causal relationships: “A happens before B.” “C and D is concurrent.”
○ Lamport clock
○ Vector clock

