
Time, Clocks and Ordering
for Distributed Systems

Tuochao Chen
Tongyan wang

Time synchronization is important for computer systems

(Fairness)Time-stamping events(Correctness) Event ordering and causality

https://docs.google.com/file/d/1zfYG9Wk96amijQZENMs3e5gVgvOOgXrm/preview

Time synchronization is important for computer systems

In distributed system, a global and shared physics clock is usually unavailable

Mutual exclusion service:

P2

P1

P3

Query

Time synchronization is important for computer systems

In distributed system, a global and shared physics clock is usually unavailable

Mutual exclusion service:

P2

P1

P3

Query

Query

Time synchronization is important for computer systems

In distributed system, a global and shared physics clock is usually unavailable

Mutual exclusion service:

P2

P1

P3

Query

Query

?

Definition of Ordering: “Happen Before” and Concurrency.

Ci() is a function that represents a clock and assign a number to an event in process i.

Happens Before: (a -> b)
C1. If a and b are events in process Pi, and a comes before b, then Ci(a) < Ci(b).

C2. If a is the sending of a message by process Pi and b is the receipt of that message by
process Pj, then Ci(a) < Cj(b).

Concurrency: (a not -> b and b not -> a)
the order of any two events can not be determined is concurrent events.

Example for Concurrent Events and A “Happens Before” B

TIME

P2

P1

= Event

A

B C D

E F G H

P: A process on an individual machine

Introduction of Logical Clocks and Two Implementation Rules

Logical Clocks refer to implementing a protocol on all machines within your distributed system, so that
the machines are able to maintain consistent ordering of events within some virtual timespan.

● Rule 1: A process updates its own clock when an event occurs.
local_lock = local_clock + 1

● Rule 2: A process updates its own clock when it receives a message from another process.
local_clock = max(local_clock, received_clock)
local_clock = local_clock + 1

P1
A B

TIMEP2

P1
A

B

DC

1 2
1 2

1

3

2

Solve Mutual exclusion service using logic clock:

P2

P1

P3

Solve Mutual exclusion service using logic clock:

P2

P1

P3 1

Release

Stack

Solve Mutual exclusion service using logic clock:

P2

P1

P3 1

R(1, P1)R(1, P1)

Stack

1

P1 send request

Release

Solve Mutual exclusion service using logic clock:

P2

P1

P3 1

R(1, P1)

R(1, P1)

Stack

R(1, P1)

1

2

2

2

3

P2, P3 recv request from P1

Solve Mutual exclusion service using logic clock:

P2

P1

P3 1

R(1, P1)

R(1, P1)

Stack

R(1, P1)

1

2

2

2

3 4

P2 send request

R(4, P2)

5

5

R(4, P2)

R(4, P2)

R(4, P2)

Solve Mutual exclusion service using logic clock:

P2

P1

P3 1

R(1, P1)

R(1, P1)

R(1, P1)

1

2

2

2

3 4

P3 send ack back to P1 and P2

5

5

R(4, P2)

R(4, P2)

R(4, P2) 6

7
A(6, P3)

ACK(6, P3)

7

8

ACK(7, P3)

A(7, P3)

Stack

Solve Mutual exclusion service using logic clock:

P2

P1

P3 1

R(1, P1)

R(1, P1)

R(1, P1)

1

2

2

2

3 4

5

5

R(4, P2)

R(4, P2)

R(4, P2) 6

7
A(6, P3)

7

8

7

8
A(7, P3)

Stack

Drawbacks of Logic Clock I

1. Lamport clocks cannot tell if events was concurrent and their causality relationship.

Event a

Event b

C2(b) = 4 > 3 = C1(a) a -> b

Event d

Event c

c -> d C1(d) > C2(c)

a,b is concurrent !

Solution to the Concurrency and Causality Issue — vector clock

Vector Clocks expand upon Scalar Time to provide a causally consistent view of the world.
● Rule 1:

local_vector[i] = local_vector[i] + 1

● Rule 2:
for k = 1 to N: V_i[k] = max(local_vector[k], sent_vector[k])
local_vector[i] = local_vector[i] + 1

P2

P1
A

B

E F

[1, 0] [2, 0]

[0, 1] [0, 1]

[2, 0] Max([0, 1], [2, 0]) = [2, 1]

[2, 1] + [0, 1] = [2, 2]

[2, 2]

Relationship between vector clock and “happen before”

We define Vi(a) > Vj(b): ∀ k, Vi(a)[k] ≽ Vj(b)[k] and ∃ k, Vi(a)[k] > Vj(b)[k]

If Vi(a) > Vj(b): b->a

Elif Vi(a) < Vj(b): a->b

Else: a, b is concurrent

[2, 2, 0] > [1, 0, 0]

[1, 5, 0] > [1, 5, 0]

[2, 4, 5] > [1, 5, 0]

Solve causality and concurrency

a [1, 0, 0] and l [0, 0, 2] :

k [1, 0, 0] and g [7, 1, 2] :

i [2, 2, 0] and e[5, 1, 2] :

a,l is concurrent

i,e is concurrent

k->g

Drawbacks of Logic Clock II

Logic clock is based on the interaction between each distributed node. It will fail when precedence
relationship is based on information external to the system.

 “anomalous behavior”：

11:00

11:10

11:03

11:05

Physical Clocks distributed system:

Node i

Node j

Requirement:

Cj(t+μ) > Ci(t)

 μ is a type of “tolerance”

Ci(t)

t

Cj(t +μ)

t +μ

Actual time t

To achieve the requirement

Actual time t

Node time

y=x (perfect clock)

Ci(t)

Node i Node j

Cj(t)

Clock drifting:

Clock condition 1: Clock condition 2:

|dCi(t)/ dt - 1| < κ << 1 |Ci(t) - Cj(t)| < ε

dCi(t)/ dt ≠ 1

To ensure clock condition 2:

Node i

Rule 1: No messages received:

Ci(t) keep increasing as dCi(t)/ dt

Rule 2: Node i sends message at t with local time Ci(t)

Node j receives message at t’, and update
Cj(t’) = max{Cj(t’-0), Ci(t) + μm}
(μm is min transmission delay)

Node i

Node j

Ci(t)

Update Cj(t’)

Ci(t)

● What are the drawbacks of the Vector Clock compared to Lamport Clock?

Ans: it requires additional memory to store the vectors and extra bandwidth to send the vector.

Discussion Questions

● What are some use cases for logical clocks? How are they different from the given use cases for physical
clocks? Give specific examples of how it is helpful.

Ans: The system only care about the order of node interaction, other than the order based external
information.

A. Mutual exclusion service such resource allocation, Data read/write scheduling

B. State machine transition system

C. Some e-commercial system: Amazon's Dynamo

Discussion Questions

● Assume we had perfect physical clocks. Describe some examples of systems that could take advantage of
this and how it is helpful.

Ans: A perfect physical clock would help to solve the anomalous behaviours as mentioned in the paper
where ordering is determined based on information external to the system. Also, it is needed in a system
where passage of time matters.

A. An airline reservation system (With a physical clock, exact time that customers initially sent their
reservation requests.

B. A GPS system would be more accurate if equipped with a perfect physical clock since exact time
difference is needed to compute accurate speed, and fewer satellites are needed in return.

Discussion Questions

