
Congestion avoidance and
control

Causes of Congestion

There are only three ways for packet conservation to fail:

1. The connection doesn’t get to equilibrium, or

2. A sender injects a new packet before an old packet has exited, or

3. The equilibrium can’t be reached because of resource limits along the path.

Desired equilibrium

Fix 1: Slow Start

1. cwnd = 1 to start
2. Send cwnd packets
3. Increase cwnd when receiving a

packet
4. Stop when you reach limit

Has a doubling effect-

Takes R log(W) time where R is
round-trip time and W is window size

Fix 1: Slow Start

1. cwnd = 1 to start
2. Send cwnd packets
3. Increase cwnd when receiving a

packet
4. Stop when you reach limit

Has a doubling effect-

Takes R log(W) time where R is
round-trip time and W is window size

Fix 2: Maintaining equilibrium

Goal: keep network running smoothly at equilibrium

Problem: when to retransmit lost packages?

Solution: use a retransmit timer for when to retry sending a packet

TCP suggests:

(α = 0.9)

Problem: large variance in arrival times

M can vary wildly when loads are high! (From queuing theory)

Fix:

(α = 0.9)

Fix 3: backoff exponentially

Uncongested load:

Congested load:

 Increases exponentially!

Fix 3: backoff exponentially

Uncongested load: Policy:

Congested load:

Congestion-control
throwdown

Hamilton vs Burr

Hamilton

● The internet is too big to find a
global optimum

○ Instead, use “online learning” to try to
find good solutions

○ A decision maker tries to make good
decisions and observes the outcomes

● Use a black-box approach to
modeling the internet

○ You probably can’t get a nice offline
model of the internet

Burr

Hamilton

● The internet is too big to find a
global optimum

○ Instead, use “online learning” to try to
find good solutions

○ A decision maker tries to make good
decisions and observes the outcomes

● Use a black-box approach to
modeling the internet

○ You probably can’t get a nice offline
model of the internet

Burr

● Greedy local algorithms are
terrible in many cases

○ They don’t even work in small examples
○ Hard to scale to arbitrary internet

● Greedy algorithms already encode
assumptions about the internet

○ Why not use these explicitly to optimize
beforehand?

○ “TCP Tahoe-like schemes worked well
in the 1990s on shallow-buffered
bottlenecks with many flows; they
performed poorly in the 2000s…”

Hamilton replies

● But black-box can work so well!
○ Machine learning has taken over

computer vision, for example
● The real world is much more

messy than your small examples
○ We can’t predict the behavior in a white

box!
● We should use different learning

algorithms in different contexts

Burr concludes

● Sure, I only care about
performance overall

● I’m still skeptical about learning
because of the parking-lot example

● Should we even be theorizing?
○ Google just tries things like BBR on

some fraction of their network to see if it
works well

○ Live against all of the real google
internet traffic

QUIK

Key point in congestion control

1. How TCP detects the congestion occur
2. How TCP adjust the transmitting rate
3. Which method should be used by TCP to adjust the transmission rate

These 3 questions have been solved previous part.

But what is different in QUIC?

Sensing congestion

Delay_sensing CC

TCP: calculate the delay: sender ->send packet -> receiver -> ack -> sender, then
adjust the number of packet.

QUIC: also recode an additional delay: send packet -> receiver -> ack

So that we can get the accurate Round-Trip time(RTT).

Use fast retransmit

TCP: retransmit based on timer

QUIC: fast retransmit,

 Tail Loss Probes(TLPs)

Flexibility

QUIC implement CC in application level.

Easy to do optimization.

