
Optimizing Joins in a Map-Reduce Environment

Foto N. Afrati∗, and Jeffrey D. Ullman†

January 18, 2010

Abstract

Implementations of map-reduce are being used to perform many operations on very large
data. We examine strategies for joining several relations in the map-reduce environment. Our
new approach begins by identifying the “map-key,” the set of attributes that identify the Reduce
process to which a Map process must send a particular tuple. Each attribute of the map-key gets
a “share,” which is the number of buckets into which its values are hashed, to form a component
of the identifier of a Reduce process. Relations have their tuples replicated in limited fashion,
the degree of replication depending on the shares for those map-key attributes that are missing
from their schema. We study the problem of optimizing the shares, given a fixed number
of Reduce processes. An algorithm for detecting and fixing problems where an attribute is
mistakenly included in the map-key is given. Then, we consider two important special cases:
chain joins and star joins. In each case we are able to determine the map-key and determine the
shares that yield the least replication. While the method we propose is not always superior to
the conventional way of using map-reduce to implement joins, there are some important cases
involving large-scale data where our method wins, including: (1) analytic queries in which a
very large fact table is joined with smaller dimension tables, and (2) queries involving paths
through graphs with high out-degree, such as the Web or a social network.

1 Introduction and Motivation

Search engines and other data-intensive applications have large amounts of data needing special-
purpose computations. The canonical problem today is the sparse-matrix-vector calculation in-
volved with PageRank [BP98], where the dimension of the matrix and vector can be in the 10’s of
billions. Most of these computations are conceptually simple, but their size has led implementors
to distribute them across hundreds or thousands of low-end machines. This problem, and oth-
ers like it, led to a new software stack to take the place of file systems, operating systems, and
database-management systems.

Central to this stack is a file system such as the Google File System (GFS) [GGL03] or Hadoop
Distributed File System (HDFS) [Apa06]. Such file systems are characterized by:

• Block (chunk) sizes that are perhaps 1000 times larger than those in conventional file sys-
tems — multimegabyte instead of multikilobyte.

∗School of Electrical and Computing Engineering, National Technical University of Athens, 15780 Athens, Greece

†Department of Computer Science, Stanford University, CA 94305

1

• Replication of chunks in relatively independent locations (e.g., on different racks) to increase
availability.

A powerful tool for building applications on such a file system is Google’s map-reduce [DG08] or
its open-source version, Hadoop [Apa06]. Briefly, map-reduce allows a Map function to be applied
to data stored in one or more files, resulting in key-value pairs. Many instantiations of the Map
function can operate at once, and all their produced pairs are routed by a master controller to
one of several Reduce processes, so that all pairs with the same key wind up at the same Reduce
process. The Reduce processes apply another function to combine the values associated with one
key to produce a single result for that key.

Map-reduce, inspired from functional programming, is a natural way to implement sparse-
matrix-vector multiplication in parallel, and we shall soon see an example of how it can be used
to compute parallel joins. Further, map-reduce offers resilience to hardware failures, which can be
expected to occur during a massive calculation. The master controller manages Map and Reduce
processes and is able to redo them if a process fails.

The new software stack includes higher-level, more database-like facilities, as well. Examples
are Google’s BigTable [CDG+08], or Yahoo!’s PNUTS [CRS+08], which can be thought of advanced
file-level facilities. At a still higher level, Yahoo!’s PIG/PigLatin [ORS+08] translates relational
operations such as joins into map-reduce computations. [cYDHP07] suggests adding to map-reduce
a “merge” phase and demonstrates how to express relationa-algebra operators thereby.

1.1 A Model for Cluster Computing

The same environment in which map-reduce proves so useful can also support interesting algorithms
that do not fit the map-reduce form. Clustera [DPR+08] is an example of a system that allows
more flexible programming than does Hadoop, in the same file environment. Although most of
this paper is devoted to new algorithms that do fit the map-reduce framework, one could take
advantage of more general computation plans (see Section 1.4). Here are the elements that describe
the environment in which computations like map-reduce can take place.

1. Files: A file is a set of tuples. It is stored in a file system such as GFS. That is, files are
replicated with a very large chunk size. Unusual assumptions about files are:

(a) We assume the order of tuples in a file cannot be predicted. Thus, these files are really
relations as in a relational DBMS.

(b) Many processes can read a file in parallel. That assumption is justified by the fact that
all chunks are replicated and so several copies can be read at once.

(c) Many processes can write pieces of a file at the same time. The justification is that
tuples of the file can appear in any order, so several processes can write into the same
buffer, or into several buffers, and thence into the file.

2. Processes: A process is the conventional unit of computation. It may obtain input from one
or more files and write output to one or more files.

3. Processors: These are conventional nodes with a CPU, main memory, and secondary storage.
We do not assume that the processors hold particular files or components of files. There is an
essentially infinite supply of processors. Any process can be assigned to any one processor.

2

1.2 The Cost Measure for Algorithms

An algorithm in our model is an acyclic graph of processes with an arc from process P1 to process
P2 if P1 generates output that is (part of) the input to P2. A process cannot begin until all of its
input has been created. Note that we assume an infinite supply of processors, so any process can
begin as soon as its input is ready.

• The communication cost of a process is the size of the input to this process. Note that we
do not count the output size for a process. The output must be input to at least one other
process (and will be counted there), unless it is output of the algorithm as a whole. We cannot
do anything about the size of the result of an algorithm anyway. But more importantly, the
algorithms we deal with are query implementations. The output of a query that is much
larger than its input is not likely to be useful. Even analytic queries, while they may involve
joining large relations, usually end by aggregating the output so it is meaningful to the user.

• The total communication cost is the sum of the communication costs of all processes compris-
ing an algorithm.

• The elapsed communication cost is defined on the acyclic graph of processes. Consider a path
through this graph, and sum the communication costs of the processes along that path. The
maximum sum, over all paths, is the elapsed communication cost.

In our analysis, we do not account for the computation time taken by the processors. Typically,
processing at a compute node can be done in main memory, if we are careful to assign limited
amounts of work to each process. Thus, the cost of reading data from disk and shipping it over a
network such as gigabit Ethernet will dominate the total elapsed time. Even in situations such as we
shall explore, where a process involves joining several relations,1 we shall assume that tricks such as
semijoins and judicious ordering can bring the processing cost down so it is at most commensurate
with the cost of shipping data to the processor. The technique of Jakobsson [Jac93] for chain joins,
involving early duplicate elimination, would also be very important for multiway joins such as those
that follow paths in the graph of the Web.

1.3 Outline of Paper and Our Contributions

In this paper, we investigate algorithms for taking joins of several relations in the environment just
described. In particular, we are interested in algorithms that minimize the total communication
cost. Our contributions are the following:

1. In Section 2, we begin the study of multiway joins, where more than two relations are joined
at once. For comparison, we review the “normal” way to compute (2-way) joins using map-
reduce. Through examples, we sketch an algorithm for multiway join evaluation that opti-
mizes the communication cost by selecting properly those attributes that are used to partition
and replicate the data among Reduce processes; the selected attributes form the map-key. We
also show that there are some realistic situations in which the multiway join is more efficient
than the conventional cascade of binary joins.

1See [GMUW08] for definitions of joins, natural joins, and conventional implementations of the join operator.

3

2. In Section 2.4 we introduce the notion of a “share” for each attribute of the map-key. The
product of the shares is a fixed constant k, which is the number of Reduce processes used
to implement the join. Each relation in a multiway join is replicated as many times as the
product of the shares of the map-key attributes that are not in the schema for that relation.

3. The heart of the paper explores how to choose the map-key and shares to minimize the
communication cost.

• The method of “Lagrangean multipliers” lets us set up the communication-cost-optimization
problem under the constraint that the product of the share variables is a constant k.
There is an implicit constraint on the share variables that each must be a positive integer.
However, optimization techniques such as Lagrange’s do not support such constraints
directly. Rather, they serve only to identify points (values for all the share variables)
at which minima and maxima occur. Even if we postpone the matter of rounding or
otherwise adjusting the share variables to be positive integers, we must still consider
both minima that are identified by Lagrange’s method by having all derivatives with
respect to each of the share variables equal to 0, and points lying on the boundary of
the region defined by requiring each share variable to be at least 1.

• In the common case, we simply set up the Lagrangean equations and solve them to find
a minimum in the positive orthant (region with all share variables nonnegative). If some
of the share variables are less than 1, we can set them to 1, their minimum possible
value, and remove them from the map-key. We then re-solve the optimization problem
for the smaller set of map-key attributes.

• Unfortunately, there are cases where the solution to the Lagrangean equations implies
that at a minimum, one or more share variables are 0. What that actually means
is that to attain a minimum in the positive orthant under the constraint of a fixed
product of share variables, certain variables must approach 0, while other variables
approach infinity, in a way that the product of all these variables remains a fixed constant.
Section 3 explores this problem. We begin in Section 3.2 by identifying “dominated”
attributes, which can be shown never to belong in a map-key, and which explain most
of the cases where the Lagrangean yields no solution within the positive orthant.

• But dominated attributes in the map-key are not responsible for all such failures. Sec-
tion 3.6 handles these rare but possible cases. We show that it is possible to remove
attributes from the map-key until the remaining attributes allow us to solve the equa-
tions, although the process of selecting the right set of attributes to remove can be
exponential in the number of attributes.

• Finally, in Section 3.7 we are able to put all of the above ideas together. We offer an
algorithm for finding the optimal values of the share variables for any natural join.

4. Section 4 examines two common kinds of joins: chain joins and star joins (joins of a large
fact table with several smaller dimension tables). For each of these types of joins we give a
closed-form solution for the optimal share of the map-key for each attribute.

• In the case of star joins, the solution not only tells us how to compute the join in
a map-reduce-type environment. It also suggests how one could optimize storage by
partitioning the fact table permanently among all compute nodes and replicating each
dimension table among a small subset of the compute nodes. This option is a realistic
and easily adopted application of our techniques.

4

1.4 Joins and Map-Reduce

Multiway joins can be useful when processing large amounts of data as is the case in web applica-
tions. An example of a real problem that might be implemented in a map-reduce-like environment
using multiway join is the HITS algorithm [Kle99] for computing “hubs and authorities.” While
much of this paper is devoted to algorithms that can be implemented in the map-reduce frame-
work, this problem can profit by going outside map-reduce, while still exploiting the computation
environment in which map-reduce operates.

In HITS, or “hubs and authorities,” one computes two scores — the hub score and the authority
score — for each Web page. Intuitively, good hubs are pages that link to many good authorities,
and good authorities are pages linked to by many good hubs.

We shall concentrate on computing the authority score, from which the hub score can be com-
puted easily (or vice-versa). We must do an iteration, where a vector that estimates the authority
of each page is used, along with the incidence matrix of the Web, to compute a better estimate.
The authority estimate will be represented by a relation A(P, S), where A(p, s) means that the
estimated authority score of page p is s. The incidence matrix of the Web will be represented by a
relation M(X,Y), containing those pairs of pages x and y such that x has one or more links to y.
To compute the next estimate of the authority of any page p, we:

1. Estimate the hub score of every page q to be the sum over all pages r that q links to, of the
current authority score of r.

2. Estimate the authority of page p to be the sum of the estimated hub score for every page q
that links to p.

3. Normalize the authorities by finding the largest authority score m and dividing all authorities
by m. This step is essential, or as we iterate, authority scores will grow beyond any bound.
In this manner, we keep 1 as the maximum authority score, and the ratio of the authorities
of any two pages is not affected by the normalization.

We can express these operations in SQL easily. The first two steps are implemented by the SQL
query

SELECT m1.Y, SUM(A.S)
FROM A, M m1, M m2
WHERE A.P = m2.Y AND m1.X = m2.X
GROUP BY m1.Y

That is, we perform a 3-way join between A and two copies of M , do a bag projection onto two of
the attributes, and then group and aggregate. Step (3) is implemented by finding the maximum
second component in the relation produced by the query above, and then dividing all the second
components by this value.

We could implement the 3-way join by two 2-way joins, each implemented by map-reduce, as
in PIG. The maximum and division each could be done with another map-reduce. However, as we
shall see, it is possible to do the 3-way join as a single map-reduce operation.2 Further, parts of

2Although we shall not prove it here, a consequence of the theory we develop is that for the HITS problem, the
3-way join is more efficient than two two-way joins for small numbers of compute-nodes. In particular, the 3-way join
is preferable as long as the number of compute nodes does not exceed the ratio of the sizes of the relations M and
A. This ratio is approximately the average fan-out of the Web, known to be approximately 15.

5

the projection, grouping, and aggregation can be bundled into the Reduce processes of this 3-way
join, and the max-finding and division can be done simply by an extra set of processes that do not
have the map-reduce form.

Figure 1 shows the algorithm we propose. The first column represents conventional Map pro-
cesses for a 3-way join; we leave the discussion about how the 3-way join algorithm is implemented
by map-reduce for Section 2. The second column represents the Reduce part of the 3-way join, but
to save some communication, we can do (on the result of the Reduce process) a local projection,
grouping and summing, so we do not have to transmit to the third column more than one authority
score for any one page. We assume that pages are distributed among processes of the third column
in such a way that all page-score pairs for a given page wind up at the same process. This distri-
bution of data is exactly the same as what Hadoop does to distribute data from Map processes to
Reduce processes.

Map
portion
of 3−way
join

Reduce
portion
of 3−way
join, partial
group and
sum

Complete
group/sum,
partial
max

Max Divide

Figure 1: The HITS algorithm as a network of processes

The third column completes the grouping and summing by combining information from different
processes in the second column that pertain to the same page. This column also begins the max
operation. Each process in that column identifies the largest authority score among any of the
pages that are assigned to that process, and that information is passed to the single process in
the fourth column. That process completes the computation of the maximum authority score and
distributes that value to all processes of the fifth column.

The fifth column of processes has the simple job of taking the page-score pairs from the third
column and normalizing the scores by dividing by the value transmitted from the fourth column.
Note we can arrange that the same compute node used for a process of the third column is also
used for the same data in the fifth column. Thus, in practice no communication cost is incurred
moving data from the third column to the fifth. The fact that our model counts the input sizes
from both the third and fifth column does not affect the order-of-magnitude of the cost, although
it is important to choose execution nodes wisely to avoid unnecessary communication whenever we
can.

In conclusion, the reader should take from this example the following points:

6

• Multiway joins of very large relations appear in practice.

• It is common for the results of these joins, although huge, to be aggregated so the output is
somewhat compressed.

• Sometimes there are better ways to perform database queries in the cluster-computing envi-
ronment than a sequence of map-reduce operations.

2 Multiway Joins

There is a straightforward way to join relations using map-reduce. We begin with a discussion
of this algorithm. We then consider a different way to join several relations in one map-reduce
operation.

2.1 The Two-Way Join and Map-Reduce

Suppose relations R(A,B) and S(B, C) are each stored in a file of the type described in Section 1.1.
To join these relations, we must associate each tuple from either relation with a “key”3 that is the
value of its B-component. A collection of Map processes will turn each tuple (a, b) from R into a
key-value pair with key b and value (a,R). Note that we include the relation with the value, so we
can, in the Reduce phase, match only tuples from R with tuples from S, and not a pair of tuples
from R or a pair of tuples from S. Similarly, we use a collection of Map processes to turn each
tuple (b, c) from S into a key-value pair with key b and value (c, S).

The role of the Reduce processes is to combine tuples from R and S that have a common B-
value. Thus, all tuples with a fixed B-value must be sent to the same Reduce process. Suppose we
use k Reduce processes. Then choose a hash function h that maps B-values into k buckets, each
hash value corresponding to one of the Reduce processes. Each Map process sends pairs with key
b to the Reduce process for hash value h(b). The Reduce processes write the joined tuples (a, b, c)
that they find to a single output file.

2.2 Implementation Under Hadoop

If the above algorithm is implemented in Hadoop, then the partition of keys according to the hash
function h can be done behind the scenes. That is, you tell Hadoop the value of k you desire, and it
will create k Reduce processes and partition the keys among them using a hash function. Further,
it passes the key-value pairs to a Reduce process with the keys in sorted order. Thus, it is possible
to implement Reduce to take advantage of the fact that all tuples from R and S with a fixed value
of B will appear consecutively on the input.

That feature is both good and bad. It allows a simpler implementation of Reduce, but the time
spent by Hadoop in sorting the input to a Reduce process may be more than the time spent setting
up the main-memory data structures that allow the Reduce processes to find all the tuples with a
fixed value of B.

3Note that “keys” in the map-reduce sense are not unique. They are simply values used to distribute data between
a Map process and the correct Reduce process.

7

2.3 Joining Several Relations at Once

Let us consider joining three relations

R(A,B) ./ S(B,C) ./ T (C, D)

We could implement this join by a sequence of two 2-way joins, choosing either to join R and S
first, and then join T with the result, or to join S and T first and then join with R. Both joins can
be implemented by map-reduce as described in Section 2.1.

An alternative algorithm involves joining all three relations at once, in a single map-reduce
process. The Map processes send each tuple of R and T to many different Reduce processes,
although each tuple of S is sent to only one Reduce process. The duplication of data increases
the communication cost above the theoretical minimum, but in compensation, we do not have
to communicate the result of the first join. As we shall see, the multiway join can therefore be
preferable if the typical tuple of one relation joins with many tuples of another relation, as would
be the case, for example, if we join copies of the matrix of the Web.

Much of this paper is devoted to optimizing the way this algorithm is implemented, but as an
introduction, suppose we use k = m2 Reduce processes for some m. Values of B and C will each
be hashed to m buckets, and each Reduce process will be associated with a pair of buckets, one
for B and one for C. That is, we choose to make B and C part of the map-key, and we give them
equal shares.

Let h be a hash function with range 1, 2, . . . , m, and associate each Reduce process with a
pair (i, j), where integers i and j are each between 1 and m. Each tuple S(b, c) is sent to the
Reduce process numbered (h(b), h(c)). Each tuple R(a, b) is sent to all Reduce processes numbered
(h(b), x), for any x. Each tuple T (c, d) is sent to all Reduce processes numbered (y, h(c)) for any
y. Thus, each process (i, j) gets 1/m2th of S, and 1/mth of R and T . An example, with m = 4, is
shown in Fig. 2.

0 1 2 3

3

2

1

0

h(b)=

h(T.c)=1

h(R.b)=2

h(c)= h(S.b)=1 and h(S.c)=3

Figure 2: Distributing tuples of R, S, and T among k = m2 processes

Each Reduce process computes the join of the tuples it receives. It is easy to observe that if
there are three tuples R(a, b), S(b, c), and T (c, d) that join, then they will all be sent to the Reduce
process numbered (h(b), h(c)). Thus, the algorithm computes the join correctly. Experiments were
run to demonstrate some cases where the 3-way join is more efficient in practice. Details about the
experiments are given in Section 5.

8

2.4 An Introductory Optimization Example

In Section 2.3, we arbitrarily picked attributes B and C to form the map-key, and we chose to give
B and C the same number of buckets, m =

√
k. This choice raises two questions:

1. Why are only B and C part of the map-key?

2. Is it best to give them the same number of buckets?

To learn how to optimize map-keys for a multiway join, let us begin with a simple example: the
cyclic join

R(A,B) ./ S(B, C) ./ T (A,C)

Suppose that the target number of map-keys is k. That is, we shall use k Reduce processes to join
tuples from the three relations. Each of the three attributes A, B, and C will have a share of the
key, which we denote a, b, and c, respectively. We assume there are hash functions that map values
of attribute A to a different buckets, values of B to b buckets, and values of C to c buckets. We
use h as the hash function name, regardless of which attribute’s value is being hashed. Note that
abc = k.

• Convention: Throughout the paper, we use upper-case letters near the beginning of the
alphabet for attributes and the corresponding lower-case letter as its share of a map-key. We
refer to these variables a, b, . . . as share variables.

Consider tuples (x, y) in relation R. Which Reduce processes need to know about this tuple?
Recall that each Reduce process is associated with a map-key (u, v, w), where u is a hash value in
the range 1 to a, representing a bucket into which A-values are hashed. Similarly, v is a bucket
in the range 1 to b representing a B-value, and w is a bucket in the range 1 to c representing a
C-value. Tuple (x, y) from R can only be useful to this reducer if h(x) = u and h(y) = v. However,
it could be useful to any reducer that has these first two key components, regardless of the value of
w. We conclude that (x, y) must be replicated and sent to the c different reducers corresponding
to key values (h(x), h(y), w), where 1 ≤ w ≤ c.

Similar reasoning tells us that any tuple (y, z) from S must be sent to the a different reducers
corresponding to map-keys (u, h(y), h(z)), for 1 ≤ u ≤ a. Finally, a tuple (x, z) from T is sent to
the b different reducers corresponding to map-keys (h(x), v, h(z)), for 1 ≤ v ≤ b.

This replication of tuples has a communication cost associated with it. The number of tuples
passed from the Map processes to the Reduce processes is

rc + sa + tb

where r, s, and t are the numbers of tuples in relations R, S, and T , respectively.

• Convention: We shall, in what follows, use R, S, . . . as relation names and use the corre-
sponding lower-case letter as the size of the relation.

We must minimize the expression rc + sa + tb subject to the constraint that abc = k. There is
another constraint that we shall not deal with immediately, but which eventually must be faced:

9

each of a, b, and c must be a positive integer. To start, the method of Lagrangean multipliers serves
us well. That is, we start with the expression

rc + sa + tb− λ(abc− k)

take derivatives with respect to the three variables, a, b, and c, and set the resulting expressions
equal to 0. The result is three equations:

s = λbc
t = λac
r = λab

These come from the derivatives with respect to a, b, and c in that order. If we multiply each
equation by the variable missing from the right side (which is also the variable with respect to
which we took the derivative to obtain that equation), and remember that abc equals the constant
k, we get:

sa = λk
tb = λk
rc = λk

We shall refer to equations derived this way (i.e., taking the derivative with respect to a variable,
setting the result to 0, and then multiplying by the same variable) as the Lagrangean equations.

If we multiply the left sides of the three equations and set that equal to the product of the
right sides, we get rstk = λ3k3 (remembering that abc on the left equals k). We can now solve for
λ = 3

√
rst/k2. From this, the first equation sa = λk yields a = 3

√
krt/s2. Similarly, the next two

equations yield b = 3
√

krs/t2 and c = 3
√

kst/r2. When we substitute these values in the original
expression to be optimized, rc + sa + tb, we get the minimum amount of communication between
Map and Reduce processes: 3 3

√
krst.

Note that the values of a, b, and c are not necessarily integers. However, the values derived
tell us approximately which integers the share variables need to be. They also tell us the desired
ratios of the share variables; for example, a/b = t/s. In fact, the share variable for each attribute is
inversely proportional to the size of the relation from whose schema the attribute is missing. This
rule makes sense, as it says we should equalize the cost of distributing each of the relations to the
Reduce processes. These ratios also let us pick good integer approximations to a, b, and c, as well
as a value of k that is in the approximate range we want and is the product abc.

2.5 Comparison With Cascade of Joins

Under what circumstances is this 3-way join implemented by map-reduce a better choice than a
cascade of two 2-way joins, each implemented by map-reduce. As usual, we shall not count the cost
of producing the final result, since this result, if it is large, will likely be input to another operator
such as aggregation, that reduces the size of the output.

To simplify the calculation, we shall assume that all three relations have the same size r. For
example, they might each be the incidence matrix of the Web, and the cyclic query is asking for
cycles of length 3 in the Web (this query might be useful, for example, in helping us identify certain
kinds of spam farms).

10

If r = s = t, the communication between the Map and Reduce processes simplifies to 3r 3
√

k.
We shall also assume that the probability of two tuples from different relations agreeing on their
common attribute is p. For example, if the relations are incidence matrices of the Web, then rp
equals the average out-degree of pages, which might be in the 10–15 range.

The communication of the optimal 3-way join is:

1. 3r for input to the Map processes.

2. 3r 3
√

k for the input to the Reduce processes.

The second term dominates, so the total communication cost for the 3-way join is O(r 3
√

k).

For the cascade of 2-way joins, whichever two we join first, we get an input size for the first
Map processes of 2r. This figure is also the input to the first Reduce processes. The output size for
those Reduce processes is r2p. Thus, the second join’s Map processes have an input size of r2p for
the intermediate join and r for the third relation. This figure is also the input size for the Reduce
processes associated with the second join, and we do not count the size of the output from those
processes. Assuming rp > 1, the r2p term dominates, and the cascade of 2-way joins has total
communication cost O(r2p).

We must thus compare r2p with the cost of the 3-way join, which we found to be O(r 3
√

k). That
is, the 3-way join will be better as long as 3

√
k is less than rp. Since r and p are properties of the

data, while k is a selectable parameter of the join algorithm, the conclusion of this analysis is that
there is a limit on how large k can be in order for the 3-way join to be the method of choice. This
limit is k < (rp)3. For example, if rp = 15, as might be the case for the Web incidence matrix,
then we can pick k up to 3375, and use that number of Reduce processes.

EXAMPLE 2.1 Suppose r = 107, p = 10−5, and k = 1000. Then the cost of the cascade of 2-way
joins is r2p = 109. The cost of the 3-way join is r 3

√
k = 108, which is much less. Note also that the

output size is small compared with both. Because there are three attributes that have to match to
make a tuple in R(A,B) ./ S(B,C) ./ T (A,C), the output size is r3p3 = 106. 2

2.6 Trade-Off Between Speed and Cost

Before moving on to the general problem of optimizing multiway joins, let us observe that the exam-
ple of Section 2.4 illustrates the trade-off that we face when using a method that replicates input.
We saw that the total communication cost was O(3

√
krst). What is the elapsed communication

cost?

First, there is no limit on the number of Map processes we can use, as long as each process
gets at least one chunk of input. Thus, we can ignore the elapsed cost of the Map processes and
concentrate on the k Reduce processes. Since the hash function used will divide the tuples of
the relations randomly, we do not expect there to be much skew, except in some extreme cases.
Thus, we can estimate the elapsed communication cost as 1/kth of the total communication cost,
or O(3

√
rst/k2).

Thus, while the total cost grows as k1/3, the elapsed cost shrinks as k2/3. That is, the faster we
want the join computed, the more resources we consume.

11

3 Optimization of Multiway Joins

Now, let us see how the example of Section 2.4 generalizes to arbitary natural joins. We shall again
start out with an example that illustrates why certain attributes should not be allowed to have a
share of the map-key. We then look at more complex situations where the Lagrangean equations do
not have a feasible solution, and we show how it is possible to resolve those problems by eliminating
attributes from the map-key.

3.1 A Preliminary Algorithm for Optimizing Share Variables

Here is an algorithm that generalizes the technique of Section 2.4. As we shall see, it sometimes
yields a solution and sometimes not. Most of the rest of Section 3 is devoted to fixing up the cases
where it does not. Suppose that we want to compute the natural join of relations R1, R2, . . . , Rn,
and the attributes appearing among the relation schemas are A1, A2, . . . , Am.

Step 1: Start with the cost expression

τ1 + τ2 + · · ·+ τn − λ(a1a2 · · · am − k)

where τi is the term that represents the cost of communicating tuples of relations Ri to the Reduce
processes that need the tuple. That is, τi is the product of ri (the number of tuples in Ri) times
the product of those share variables aj such that attribute Aj does not appear in the schema of Ri.
Note that this product of share variables is the number of Reduce processes to which each tuple of
Ri must be distributed.

Step 2: For each share variable ai, differentiate the cost expression with respect to ai, and set
the resulting expression to 0. Then, multiply the equation by ai. The result is a collection of
equations of the form Sai = λa1a2 · · · am, where Sai is the sum of those τj ’s such that Ai is not
in the schema of Rj . Since the product a1a2 · · · am is constrained to equal k, we can write the
equations as Sai = λk. These are the “Lagrangean equations” for the join.

Step 3: Since Step 2 gives us m equations in m unknowns (the ai’s), we can in principle solve for
the ai’s, in terms of λ, k, and the relations sizes, the ri’s. Including the equation that says the
product of all the share variables is k, we can further eliminate λ.

3.2 Dominated Attributes

What can go wrong in Step 3? A lot. First, the solution for the share variables may assign some
values less than 1. If so, we need to eliminate those share variables from the map-key and repeat the
algorithm of Section 3.1 with the new map-key. However, there are more complex cases where the
equations do not have a feasible solution because some of the τi’s are forced to be 0. We shall study
the simple case of this phenomenon, identify its cause (a “dominated” attribute), and show how
to eliminate the problem. Then, in Section 3.6 we show how to deal with the general case where a
sum of τi’s is forced to be 0. We can work around these cases as well, although the algorithm to
find a feasible solution can take time that is exponential in the number of attributes.

To see the simple case of the problem, as well as to illustrate the algorithm of Section 3.1,
consider the following join:

R(A,B, C) ./ S(A, B,D) ./ T (A,D,E) ./ U(D, F)

12

whose hypergraph representation is shown in Fig. 3.2. In Step 1 we construct the cost expression:

rdef + scef + tbcf + uabce −
λ(abcdef − k)

For example, the first term has the size of the relation R and the product of all share variables
whose attributes are not in the schema of R.

C

A B

D
E

F

Figure 3: Hypergraph of relations illustrating dominated attributes

The Lagrangean equations of Step 2 are:

uabce = λk
tbcf + uabce = λk
scef + tbcf + uabce = λk
rdef = λk
rdef + scef + uabce = λk
rdef + scef + tbcf = λk

Unfortunately, these equations do not yield a feasible solution. For example, if we subtract the
first from the second, we get tbcf = 0. But since all share variables and relation sizes are positive
integers, this situation is impossible. Several other terms can be shown equal to 0 as well.

A tool that lets us avoid some problems of this sort is the concept of “dominated attributes.”
Say attribute X dominates attribute Y if every schema that has Y also has X.

EXAMPLE 3.1 For the four relations above, we see that A dominates B. That is, A appears in
the schemas of R, S, and T , while B appears only in the schemas of R and S. However, B is not
the only dominated attribute. In general, any attribute that appears only once in the join will be
dominated. Thus, C, E, and F are also dominated. 2

Any dominated attribute may be given a share equal to 1. Note that a variable with share 1 is
effectively out of the map-key, since there is only one bucket for that attribute and all map-keys
have the same value for that component.

3.3 Proof of the Dominator Rule

In proof, suppose we have a solution to some cost-minimization problem where attribute A domi-
nates B, but the solution assigns a value b > 1 to the share for B. Replace a and b in the supposedly

13

minimum solution by ab and 1, respectively. We claim that the cost of the solution does not in-
crease. There are three possibilities regarding which of a and b is a factor of a term in the cost
function:

1. Both a and b are factors. This case occurs for terms like uabce in the running example of this
section. The reason is that neither A nor B is an attribute of the schema of U . If both a and
b are factors, their product is ab both before and after the transformation in the shares of A
and B.

2. b is a factor, but a is not. This case corresponds to a relation that has A in its schema but
not B, such as tbcf in our running example. In this case, the cost function goes down when
we replace b by 1.

3. Neither a nor b are factors. This case corresponds to a relation that has both A and B in its
schema, such as rdef in our running example. Here, changing a and/or b has no effect on the
term.

The important point to observe that the fourth case, where a is a factor but b is not, cannot occur
if A dominates B. Such a term corresponds to a relation whose schema has B but not A, and that
is exactly what cannot occur if A dominates B.

3.4 A Map-Key Example

Let us continue with the example of Section 3.2, where we want to compute:

R(A,B, C) ./ S(A, B,D) ./ T (A,D,E) ./ U(D, F)

We have shown that the attributes B, C, E and F are dominated so they should not be in the
map-key, i.e., their shares are b = c = e = f = 1. Hence, we derive the following cost expression:

rd + s + t + ua

The Lagrangean equations now are:

rd = λk
ua = λk

in addition to the equation ad = k. The solution is:

a =
√

kr/u, d =
√

ku/r

Thus only attributes A and D are in the map-key, assuming k is large enough so both
√

kr/u and√
ku/r are not less than 1. In what follows, we shall assume a and d are integers; if not, they

should be rounded to integers. We distribute tuples into hash buckets, or equivalently, to Reduce
processes as follows.

First, remember that we have k Reduce processes that are conveniently named (i, j) for

i = 1, . . . ,
√

kr/u and j = 1, . . . ,
√

ku/r

Let HA be a hash function from A-values to a buckets and HD hash D-values to d buckets.

Tuple R(x, y, z) goes to all
√

ku/r Reduce processes, specifically to (hA(x), j) for all j =
1, . . . ,

√
ku/r. Tuple S(x, y, w) goes to only one Reduce process, (hA(x), hD(y)). Similarly, tu-

ple T (x,w, z1) goes to only one Reduce process, (hA(x), hD(y)). Finally tuple T (w, z2) goes to all√
kr/u Reduce processes, specifically to (i, hD(w)) for all i = 1, . . . ,

√
kr/u.

14

3.5 Domination is Not Enough

Whenever some sum of terms equals 0, we cannot get a feasible solution to the Lagrangean equa-
tions. Eliminating dominated attributes can handle some of these problems, as we saw in Sec-
tion 3.2. However, more complex problems may sometimes arise as will be shown in Example 3.2.
This example shows that there is a cost expression where a linear combination of the Lagrangean
equations yields a sum of terms to be equal to 0. Moreover, in this example, there are no dominated
attributes, so the example demonstrates that eliminating dominated attributes is necessary but not
sufficient.

EXAMPLE 3.2 In this example, we take all relation sizes to be the same, and so do not include
these sizes as factors in the cost expression. The cost expression we have in mind is:

eab + dc + af + eg + ae + ecb + ecg + ch + de +
fc + gh + bhg + mh + mg

Note that the join itself, which is a join of 13 relations, can be deduced from this expression. For
instance, the first relation, giving rise to term eab, has attributes C, D, F , G, H, and M .

If we set up the Lagrangean equations, then each equation will be Sx = λk for x = a, b, c,
Now, it is easy to do the calculations and see that the following linear combination is equal to 0.
(Note that we add five Sx’s and subtract also five Sx’s — we subtract four distinct Sx’s but Sb

contributes twice — thus the λk’s cancel each other.)

Sa + Se + Sc + Sh + Sg − (2Sb + Sd + Sf + Sm) =
2ae + 3ecg + 2ch + 2eg + 2gh = 0

2

3.6 Dealing With a Sum of Terms Equal to Zero

In this section we present the general case of sums of terms equal to 0. We begin with a simple
example where all relations have the same size; thus assume without loss of generality that r = 1.
As we shall see, the argument we use does not really depend on the size of relations.

3.6.1 An Example

As in Section 3.1, denote by Sx the sum of terms in the communication cost function that have
share variable x as a factor. Suppose for example that we have equation Sa + Se + Sc = 2Sb + Sd.
Suppose also that all terms on the right hand side (which is 2Sb +Sd) of this equation are canceled
by terms of the left hand side, so some terms in the left hand side remain and are equated to 0. A
useful observation is that Sb contains only terms that have at least two of a, c, and e. The reason
is that:

a) Each term in Sa, Sb, . . . has coefficient 1 (because all relations have the same size), and

b) Each term from 2Sb has to be canceled by either one term from Sa and one term from Se or
a term from Sa and a term from Sc or a term from Sc and a term from Se.

15

A second useful observation is that Sd contains only terms that have at least one of a, c, and e.

Consider a solution a, c, e. If any of these variables are less than 1, the solution is not feasible.
We must raise any fraction to 1, and can then eliminate that variable from the map-key. Assuming
a, c, and e are all greater than 1, pick the smallest of them, say c. Do the following transformation:
b′ = bc2; d′ = dc; a′ = a/c, e′ = e/c, and c′ = 1. All other share variables are unchanged. We claim
that this transformation does not increase any term in the cost expression.

In proof, any term with b has at least two of a, c, and e. First, suppose the term does not also
have d. There are four cases:

1. If the term has a and e but not c, then the new term has factor b′a′e′ = (bc2)(a/c)(e/c) = bae;
i.e., the term does not change.

2. If the term has all of a, c, and e, then b′a′c′e′ = (bc2)(a/c)(1)(e/c) = bae, which is less than
the original factor bace.

3. If the term has a and c, but not e, then

b′a′c′ = (bc2)(a/c)(1) = bac

i.e., the term does not change.

4. The final case, where the term has e and c but not a is similar.

For the terms with d but not b, there are seven cases, corresponding to the seven nonempty
subsets of {a, c, e} that may appear with d in the term. We shall consider only one; the others are
analogous. Suppose the term has a, but not c or e. Then d′a′ = (dc)(a/c) = da, so the term does
not increase.

Finally, we must consider the case where both b and d appear in a term. In this case we argue
that all of a, c, and e also appear in this term. In proof, the term appears on the right hand side
2 + 1 = 3 times, so we must find this term three times on the left hand side as well. The only
possibility is for this term to appear in all three Sx’s on the left. Hence this term has factor abcde,
and by the transformation remains the same.

The final step is to argue that the transformation does not violate the constraint that the
product of all share variables is a given constant k. But that argument is the same as the last case
above; the product abcde does not change, and no other share variable was changed.

3.6.2 A Transformation That Eliminates a Sum of Terms Equal to Zero

In general, whenever there is an equality in which all the terms on one side also appear on the
other side, then we can discover a transformation of the shares that sets one of the variables to 1.
We can repeat this argument until all variables that can be eliminated are gone.

There is, however, a subtle but important point that must be addressed. In Example 3.6.1 we
assumed that c was the smallest of a, c, and e. Yet we cannot tell which is smallest until we solve
the equations, and until we get rid of all sums of terms equal to 0, we cannot solve the equations.
Thus, we have to attempt solutions in which each of a, c, and e plays the role of the smallest of
the three and take the best of what we get. Solving these three subcases may result in more share
variables being eliminated by the same process, which in turn will multiply the number of subcases
we need to solve. In the worst case, we have to solve a number of subproblems that is exponential

16

in the number of share variables. However, the exponent is limited in general by the number of
variables we are forced to set to 1.

Now we generalize the argument we used in the above example. We use the notation that
we introduced in the example above (Sa, etc.). By “sum of terms” we mean a sum of τi’s (as in
Section 3.1) with positive integer coefficients. The generalization is based on the following lemma:

Lemma 3.1 If there is a sum-of-terms = 0 then there are sums of terms Sai and Sbi and positive
integers mi and ni, such that the following hold:

1. Σµ
i=1miSai = Σν

i=1niSbi, and all the terms of the right hand side of the equation are canceled
by terms of the left hand side.

2. Σµ
i=1mi = Σν

i=1ni

2

Proof: (1) is simply a restatement of the fact that some sums and differences of the Si’s has led
to a cancellation in which there are terms on one side and not the other.

(2) follows from the fact that each of the Sx’s are equal, and equal to λk. If Σµ
i=1mi 6= Σν

i=1ni,
then we can replace all occurrences of Si’s by λk, and get that

(Σµ
i=1mi − Σν

i=1ni)λk = 0

But k is a chosen positive constant, and λ is a parameter that cannot be identically 0, so we would
have a product of three nonzero values equal to 0.

Convention:

• We call conditionally optimal a solution that minimizes the cost expression over real values
≥ 1 and under the constraint that the product of all shares is equal to a certain given number.

• We call globally optimal a solution that minimizes the cost expression over all real values and
under the constraint that the product of all shares is equal to a certain given number.

Now we prove the following theorem.

Theorem 3.1 Suppose there is a sum-of-terms = 0. Suppose that a0, b0, . . . is a conditionally
optimal solution. Then there is a conditionally optimal solution a′0, b′0, . . . where one of the a′0, b′0, . . .
is equal to 1. 2

The proof of this theorem can be found in the Appendix, Section A.

3.6.3 The Algorithm That Eliminates Sums of Terms Equal to Zero

In conclusion, we proved above that the following algorithm handles the cases where there exists
a sum of terms that equals zero. This algorithm takes as input a cost-minimization problem that
possibly derives (using the Langragean method) equations with a positive linear combination equal
to zero and produces a set of cost-minimization problems, none of which has a sum of terms equal
to 0. The solution to the original optimization problem is the solution to that subproblem with the
minimum optimized cost.

17

1. Suppose that for problem P , there is a sum of terms which is equal to zero. Then, let mi,
Sai ,ni, and Sbi

be such that they satisfy the conditions in Lemma 3.1. For each ai, replace ai

by 1 and create a new problem Pi with one fewer variable.

2. For each problem Pi we repeat the first step above if there is a sum of terms that equals to
zero; otherwise, we go to Step 3 below.

3. We solve all the created subproblems above and, for each, we compute the optimum. The
solution to our problem is the solution to the subproblem with the minimum optimum cost.

3.7 The Complete Algorithm

We can now describe an algorithm that yields the minimum-cost solution for apportioning the share
variables among the attributes of a multiway natural join.

Step 1: Select those attributes that will get shares of the map-key. To do so, eliminate any
attribute that is dominated by another attribute. In the case that two or more attributes appear
in exactly the same schemas, eliminate all but one arbitrarily.

Step 2: Write the cost expression. This is the sum of one term for each relation in the join. The
term for a relation R is the size r of that relation multiplied by the share variables for all the
attributes that are in the map-key but not in the schema of R.

Step 3: Construct the Lagrangean equations for the join.

Step 4: Eliminate the cases where sum-of-terms = 0 according to the algorithm in Section 3.6.3
and derive a set of subproblems to solve, in each of which there is no sum of terms being equal to
zero.

Step 5: Find the conditionally optimal solution for each of the subproblems and keep the one with
the minimum cost.

3.8 Meaning of Solutions

Since we are solving nonlinear equations in general, we should not expect unique solutions. For
example, notice in the simple 3-way join examined in Section 2.4, we developed one solution that
had positive values for a, b, and c. However, if we negate any two of the three values, we get another
solution that offers a lower communication cost. Of course this solution is not in the feasible region,
since all share variables must be 1 or more.

Even when we make the assumption that all values are positive, we often get a solution in
which some share variables are less than 1. The cases discussed in Sections 3.2 and 3.6 result in
certain variables being removed from the map-key, thus effectively forcing us to limit our search for
solutions to a boundary of the feasible region, that is, to a subregion where certain variables are
fixed at their lowest possible value, 1. While it makes intuitive sense to make this restriction and
we have proved in Appendix B that at least one optimal solution lies in this subregion, we have
not ruled out the possibility of the existence of an optimal solution where one or more of these
variables have larger values.

Finally, we have no guarantee that the solution we construct will have integer values. One might
expect that rounding each noninteger to its nearest integer will offer the best integer solution, but

18

there is no guarantee that is the case. We should observe that integer linear programs are often
solved by finding the (noninteger) solution to the corresponding linear program and then rounding
the fractions. However, that method is not guaranteed to produce the best integer solution.

Thus, we suggest that the solution we propose for optimizing multiway joins should be viewed
as providing guidance as to which attributes deserve large shares and which do not. When deciding
the exact shares we must deal not only with the constraint that shares be integers, but that their
product must be the specific integer k. That further limits our choices to integers that evenly divide
k, and in the rounding process we must preserve the product. An alternative approach to selecting
shares is to treat k as a suggestion rather than a requirement. Then we can be more flexible in our
selection of shares, as long as we choose integers that are near to the exact, noninteger values of
the optimum solution.

4 Important Special Cases

In this section, we consider the common case of a natural join that is a chain of relations, each
linked to the following one by a single attribute. We prove a surprising simplification of the general
problem: the terms of the cost expression always divide into two alternating groups with related
values. Moreover, in the case of an even number of terms, one of these groups has values independent
of the number of Reduce processes k. We begin with a study of star joins, where a fact table is
joined with several dimension tables, and see that there is a simple solution in this case.

4.1 Star Joins

A star join has the form suggested by Fig. 4.1. A central fact table, represented here by the relation
ABCD is joined with several dimension tables, here represented by AE, BF , CG, and DH. It is
expected that the fact table is very large, while the dimension tables are smaller. Moreover, the
attribute or attributes shared by a dimension table and the fact table are normally a key for the
dimension table. It is normal for there to be more attributes of the fact table than those shown,
but these will not be part of the map-key for the join, and thus are not relevant to our discussion.
Similarly, there may be more than one nonkey attribute of each fact table. Further, it is possible
that there are several attributes shared between the fact table and one of the dimension tables,
but for the purpose of optimizing the multiway join, we can combine them into one attribute as we
have done in our example.

We shall generalize Fig. 4.1 to a fact table F (A1, A2, . . . , An) and n dimension tables, Di(Ai, Bi),
for i = 1, 2, . . . , n. First, observe that Ai dominates Bi, so we shall not have shares of the map-key
for any of the Bi’s. If we apply the method of Section 3.7, we start with the cost expression

f + kd1/a1 + kd2/a2 + · · ·+ kdn/an

where k = a1a2 · · · an, the product of all the shares. When we derive the equations for each of the
share variables ai, we find that the equation is missing the term f and the term kdi/ai but has all
the other terms.

EXAMPLE 4.1 Consider the join of Fig. 4.1. To name the relations, take the join to be

R(A,B,C, D) ./ S(A,E) ./ T (B, F) ./ U(C, G) ./ V (D, H)

19

A

E

B F

C

G

DH

Figure 4: A star join

Then the cost expression is
r + sbcd + tacd + uabd + vabc

and the Lagrangean equations are:

tacd + uabd + vabc = λk
sbcd + uabd + vabc = λk
sbcd + tacd + vabc = λk
sbcd + tacd + uabd = λk

If we subtract each equation from each other equation, we conclude that each of the four terms
sbcd, tacd, uabd, and vabc must be equal. Remembering that abcd = k, we can write these four
terms as s/a = t/b = u/c = v/d. Thus, the minimum-cost solution has shares for each variable
proportional to the size of the dimension table in which it appears. That makes sense; it says that
the map-keys partition the fact table into k parts, and each part of the fact table gets equal-sized
pieces of each dimension table with which it is joined.

We can use these equations to solve for b, c, and d in terms of a. The result is b = at/s, c = au/s,
and d = av/s. Then, using the fact that abcd = k, we derive a4tuv/s3 = k, or a = 4

√
ks3/tuv,

b = 4
√

kt3/suv, c = 4
√

ku3/stv, and d = 4
√

kv3/stu. 2

We can easily generalize Example 4.1.

Theorem 4.1 Let d = d1d2 · · · dn, that is, the product of the sizes of all the dimension tables.
Then ai, the share for the attribute that appears in the fact table’s schema and the schema of the
ith dimension table is di

n
√

k/d. 2

4.2 Advantage of Replication for Star Joins

Since the shared attributes of a star join are keys of the dimension tables, we do not expect a large
blow-up in the size of the join. However, it is normal for the fact table to be orders of magnitude
larger than the dimension tables, so there is a definite advantage of not having to communicate the
intermediate joins, where the fact table is joined with each dimension table, in turn. Even if the

20

dimension tables are significantly replicated, the cost of communicating the dimension tables can
still be much smaller than the cost of communicating the fact table.

There is another question that the result in Section 4.1 answers. Aster Data (www.asterdata.com),
lays out fact and dimension tables across a large number of nodes, by partitioning the fact table
across the nodes and replicating the dimension tables so that each tuple of each dimension table
has a copy at any node with one or more fact-table tuples that joined with it. They viewed the
problem as finding an optimum partition of the fact table, taking into account the particular values
in the data. The minimum-communication solution we developed in Section 4.1 tells the most
space-efficient way to partition the fact and dimension tables, but in a way that is oblivious to the
data. We believe that our solution will be the best in practice for two reasons:

1. It is unlikely that typical data distributions allows less replication than the data-oblivious
approach.

2. But more importantly, if we take the data into account, then as the fact table grows, we
need to rethink the distribution of the dimension tables with each additional tuple. With the
data-oblivious approach, we would only add the new fact tuple to the one node to which that
tuple hashed.

4.3 Chain Joins

A chain join is a join of the form

R1(A0, A1) ./ R2(A1, A2) ./ · · · ./ Rn(An−1, An)

as suggested by Fig. 4.3. It is probably the most common form of join, at least if one includes
cases where the relations have attributes other than the A’s that are unique to those relations (and
whose presence would not affect the analysis we are about to offer).

A 0 A 1 A 2 A 3 A n−1A n−2 A n

R 1 R 2 R 3 R nR n−1

. . .

. . .

Figure 5: General form of a chain join

EXAMPLE 4.2 We shall use, as a running example, the specific chain join

R(A,B) ./ S(B, C) ./ T (C, D) ./ U(D, E)

In terms of the general chain-join form, n = 4, R, S, T , and U play the roles of R1, R2, R3, and
R4, respectively, and the roles of A0 through A4 are played by A, B, C, D, and E, respectively. 2

Let us apply the algorithm of Section 3.7 to a chain join. First, Step 1 tells us to eliminate the
attributes A0 and An from the map-key, as they are dominated by A1 and An−1, respectively. No
other attributes are dominated, so the map key consists of {A1, A2, . . . , An−1}.

21

EXAMPLE 4.3 For the case of Example 4.2, we eliminate A and E. The map-key consists of B,
C, and D. 2

In Step 2, we construct the cost expression. It is the sum of terms, one for each relation. The
term τi for Ri consists of factor ri and all the share variables aj where Aj is not in the schema of
Ri but is in the map-key. That is, we require either 1 ≤ j ≤ i− 2 or i < j < n.

EXAMPLE 4.4 Let us continue Example 4.3. The cost expression is

rcd + sd + tb + ubc

Note the general pattern. The term corresponding to R1 will have factors r1 and all share variables
aj for 2 ≤ j < n. The first term above is an example. The term for Rn will have factors rn and all
share variables aj where 1 ≤ j ≤ n− 2; the last term above illustrates. All other terms are like sd
and tb above, they have one fewer factor than the end terms, and are missing the share variables
for the two attributes of their schema. Note also that as the chain gets longer, the terms get larger.
For arbitrary n, the end terms have n − 2 share variables as factors and the middle terms have
n− 3 share variables as factors. 2

In what follows, we shall use τi to stand for the term constructed in Step 2 for the relation Ri.
Then, in Step 3, we construct the Lagrangean equations:

τ3 + τ4 + · · ·+ τn = λk
τ1 + τ4 + · · ·+ τn = λk
τ1 + τ2 + τ5 + · · ·+ τn = λk
τ1 + τ2 + τ3 + τ6 + · · ·+ τn = λk

. . .

That is, each equation is missing two consecutive τ ’s.

If we subtract the first equation from the second, we get τ1 = τ3. Subtracting the second from
the third yields τ2 = τ4, and in a similar manner we can derive τi = τi+2 for all i from i = 1 to
i = n− 2. That is, all the even terms are equal, and all the odd terms are equal.

EXAMPLE 4.5 Following Example 4.4, we get rcd = tb and sd = ubc. These equations, together
with bcd = k are all we need to get a solution. First, from rcd = tb we get b = (r/t)cd. Substitute
for b in sd = ubc to get sd = (ur/t)c2d. The latter equation simplifies to c =

√
st/ru. Notice that

c has a value that doesn’t depend on k. If st < ru, then c = 1 must be chosen; i.e., attribute C is
not really part of the map-key. However, if st > ru, then c has a constant value greater than 1. For
example, if st = 4ru, then C’s share is exactly 2; i.e., we must partition C-values into two buckets.

We can continue to solve for b and d. From b = (r/t)cd and c =
√

st/ru we deduce b = d
√

rs/tu
by substituting for c in the formula for b. Then, since bcd = k, we may substitute for b and c to
get d2

√
st/ru

√
rs/tu = k. From this equation, we solve for d to get d =

√
ku/s. From there, with

b = d
√

rs/tu, we get b =
√

kr/t. 2

4.4 Solving the General Case of Chain Joins

Our goal is to give a closed-form expression for the share belonging to every attribute in a chain
join. Interestingly, the solutions are rather different for odd- and even-length chains.

22

We shall first analyze the case where all relations are of equal size. That case involves consider-
ably simpler algebraic expressions, yet illustrates the two different forms of solution, one for even
n and one for odd n. It also serves to introduce the algorithm used in the general case, without
obscuring the idea behind the algebra. Figure 4.4 suggests how the shares of the attributes of the
map-key vary along the chain in the two cases.

Recall that the Lagrangean equations

τ3 + τ4 + · · ·+ τn = λk
τ1 + τ4 + · · ·+ τn = λk
τ1 + τ2 + τ5 + · · ·+ τn = λk
τ1 + τ2 + τ3 + τ6 + · · ·+ τn = λk

. . .

imply that

τ1 = τ3 = τ5 = · · ·
τ2 = τ4 = τ6 = · · ·

Moreover, the converse holds as well, in the sense that the equalities among the τ ’s imply the
original equations, with the exception of the fact that we lose the particular value λk. However,
since we need to solve for λ anyway, the loss is not important, and we shall henceforth look only
for values of the share variables that satisfy the equalities of the even τ ’s and the odd τ ’s.

(b) Pattern for odd
numbers of relationsnumbers of relations

(a) Pattern for even

Figure 6: For chains of even length, only alternating attributes get a share; for odd lengths, the shares form
an increasing and decreasing sequence, interlaced

We can write τ1 as r1k/a1, τn as rnk/an−1 and all other τ ’s as τi = rik/(ai−1ai). The fact that
k is the product of the ai’s justifies this rewriting. That is, the equalities of the τ ’s, with common
factor k removed, can be written in two simple ways, depending on whether n is odd or even. For
even n:

r1
a1

= r3
a2a3

= r5
a4a5

= · · · = rn−1

an−2an−1

r2
a1a2

= r4
a3a4

= · · · = rn−2

an−3an−2
= rn

an−1

Note that for even n, the two end terms, for R1 and Rn, have their contributions in different
equations. These terms differ from all others, in that they have only one a in the denominator. For
odd n, one equation has both of the “end” terms, and the other has none:

23

r1
a1

= r3
a2a3

= r5
a4a5

= · · · = rn−2

an−3an−2
= rn

an−1

r2
a1a2

= r4
a3a4

= · · · = rn−1

an−2an−1

4.4.1 Even n, All Relations Equal in Size

We can simplify the equations by setting r1 = r2 = · · · = rn and dividing through by the relation
size. Thus, the equations become:

1
a1

= 1
a2a3

= 1
a4a5

= · · · = 1
an−2an−1

1
a1a2

= 1
a3a4

= · · · = 1
an−3an−2

= 1
an−1

Further, we can invert each term, so we need to solve the following:

a1 = a2a3 = a4a5 = · · · = an−2an−1

a1a2 = a3a4 = · · · = an−3an−2 = an−1

It turns out that expressing everything in terms of a2 is the most effective way to resolve the
equations. Remember that we cannot solve for exact values of the ai’s until we apply the condition
that their product is k, but we can solve for their ratios. To begin, we prove by induction on i that

Lemma 4.1 a2i = (a2)i, for i = 1, 2, . . . , (n/2)− 1. 2

Proof: The basis is obvious. For the induction, note from the first set of equalities,

a1 = a2i−2a2i−1 for i = 2, . . . , n/2

From the second set of equalities,

a1a2 = a2i−1a2i for i = 1, 2, . . . , (n/2)− 1

Use the first to substitute for a1 in the second, to get

a2a2i−2a2i−1 = a2i−1a2i

Now, cancel the a2i−1 terms from both sides, and use the inductive hypothesis to replace a2i−2 by
(a2)i−1. The result is that a2i = (a2)i.

Next, use the equality of the ends of both sequences of equal terms to get a1 = an−2an−1 and
a1a2 = an−1. From these, it follows that a2an−2 = 1. But we also have derived an−2 = (a2)(n/2)−1.
That is, a2(a2)(n/2)−1 = 1. But all the ai’s are positive numbers, so it follows that a2 must be 1.
Therefore, all the even-subscripted a’s are 1; that is

a2 = a4 = a6 = · · · = an−2 = 1

24

Once we know the even a’s are all 1, it follows from either set of equalities that the odd a’s are all
the same; that is: a1 = a3 = a5 = · · · = an−1. Further, we can use the fact that the product of all
the a’s is k to deduce that

a1 = a3 = a5 = · · · = an−1 = k2/n

That is, all the odd a’s are the (n/2)th root of k. This solution makes intuitive sense; it says that
each of the relations in the join has one of its attributes contributing to the map-key and the other
not.

4.4.2 Odd n, All Relations Equal in Size

We have to solve almost the same set of equations, but the two terms a1 and an−1 that are different
because they are not the product of two a’s appear in the same set of equalities as:

a1 = a2a3 = a4a5 = · · · = an−3an−2 = an−1

a1a2 = a3a4 = · · · = an−2an−1

The same argument as in Lemma 4.1 tells us that each of the even-subscripted a’s is a power of a2;
that is a2i = (a2)i. But now, an−1 is one of these, and we deduce an−1 = (a2)(n−1)/2.

We also know from the first set of equalities that a1 = an−1, so a1 = (a2)(n−1)/2. Now,
we can solve for the remaining odd-subscripted a’s. Using the first set of equalities, we know
that a1 = a2ia2i+1 for i = 1, 2, . . . , (n − 3)/2. We’ve also deduced that a2i = (a2)i. Thus,
a2i+1 = (a2)((n−1)/2)−i. That is, the even-subscripted a’s are increasing powers of a2, while the
odd-subscripted a’s are decreasing powers of a2.

Thus, the product of the a’s is (a2)(n−1)(n+1)/4. Since this product is k, we find a2 = k4/((n−1)(n+1)),
from which we can deduce each of the a’s.

EXAMPLE 4.6 Suppose n = 7 and k = 4096 = 212. Then a2 = 40961/12 = 2. It follows that
a1 = a6 = 8, a2 = a5 = 2, and a3 = a4 = 4. 2

4.4.3 Even n, Arbitrary Relation Sizes

The techniques outlined in Section 4.4 generalize to the situation where the ri’s differ. We shall
sketch the calculations, since once the formulas are given, it is straightforward to substitute them
into the required equalities and see that they work. Recall that the equalities for the even-n case
have the form

r1
a1

= r3
a2a3

= r5
a4a5

= · · · = rn−1

an−2an−1

r2
a1a2

= r4
a3a4

= · · · = rn−2

an−3an−2
= rn

an−1

It is again convenient to express all share variables in terms of a2. We can show the following
formula that gives the even share variables:

a2i = (a2)i
i∏

j=2

r1r2j

r2r2j−1

25

This rule gives us one formula for an−2 in terms of a2. We can use the equalities r1/a1 =
rn−1/(an−2an−1) and r2/(a1a2) = rn/an−1 to derive a second formula for an−2 in terms of a2:

an−2 =
1
a2

.
r2rn−1

r1rn

when we equate the two formulas for an−2 we get

a2 =
(n/2∏

j=2

r2r2j−1

r1r2j

)2/n

Note that this formula is independent of k, although it is far more complicated than the a2 = 1
that we derived for the equal-sized relations case.

We cannot solve directly for all the odd-subscripted a’s, but we can get formulas for them in
terms of a1. Once we have that, then we can apply the condition that the product of all a’s is k to
solve exactly for the odd-subscripted share variables. That is, the equality r1/a1 = r2i+1/(a2ia2i+1)
gives us the formula a2i+1 = a1r2i+1/(r1a2i). But a2i has an even subscript, so we already have a
formula for it in terms of the r’s and a2, and we have a formula for a2 solely in terms of the r’s.
Thus, we have a formula for the odd-subscripted a2i+1 in terms of a1 and the r’s.

At this point, we have formulas for all the a’s in terms of variable a1 and the constant r’s. We
equate the product to k in order to obtain a value for a1. From this value, we get values for the
other odd-subscripted a’s. Together with the formulas for the even-subscripted a’s that we derived
previously, we have all the optimal values of the share variables.4

4.4.4 Odd n, Arbitrary Relation Sizes

As for the case of equal relation sizes, the solution grows exponentially in a2 for the even-subscripted
a’s and decays exponentially in a2 for the odd-subscripted a’s. We shall give the formulas for each
sequence in terms of a2. First, for the even subscripts:

a2i = (a2)i
i∏

j=2

r1r2j

r2r2j−1

For the odd subscripts:

an−2i = (a2)i
i∏

j=1

r1rn−2j+1

r2rn−2j+2

As we now have all a’s in terms of a2 and the r’s, we can set the product of the a’s to k and
solve for a2. From that, we can derive values in terms of the r’s for all share variables.

5 Experiments

Thanks to Student Victor Kyritsis, experiments were run to demonstrate some cases where the
3-way join is more efficient in practice The experiments were run on Hadoop. The following join

4We are aware that the above description is an algorithm for computing the share variables, and not an algebraic
expression for those variables. However, there is little to be gained by writing the very complicated expressions
themselves, and the simple algorithm described shows that it is possible to compute the values of the share variables
in any particular instance.

26

data |R| |S| |T | |R ./ S| |S ./ T | |R ./ S ./ T |
set
1 1.0 0.8 1.0 1.47 8.89 16.33
2 0.5 2.0 0.5 4.9 1.85 0.05
3 1.0 0.8 1.0 14.58 12.30 224.06
4 1.1 0.8 0.5 16.05 11.69 0.57
5 0.9 0.8 0.8 25.00 22.51 42.14
6 0.9 0.9 0.9 35.71 38.10 32.33

Figure 7: Table: Sizes of datasets, sizes of intermediate relations and size of output

dataset Two 2-way Joins Three-Way Join
1 2594 2052
2 2560 813
3 2854 1378
4 3448 1594
5 2484 964
6 2637 966

Figure 8: Processing times for the two methods in secs

was computed
R(A,B) ./ S(B,C) ./ T (C, D)

The processing time was counted for the two different methods. Six datasets were used whose sizes
(number of tuples) are shown in the table in Figure 7 in millions (i.e., the actual size is the number
shown multiplied by 106). Figure 8 shows the processing times of the two methods.

The experiments are set up as follows. The multi-node cluster is composed of 4 personal
computers which are running Debian GNU/Linux operating system with kernel version 2.6. Each
node has 2 processors running at 3.0 GHz, while the main memory is 1 GB and the secondary
storage unit has capacity of 160 GB. It should be mentioned that one node in the cluster (“master”
node) is responsible for the management of the distributed file system namespace and the regulation
access to files, as well as the assignment of the map and reduce tasks to the other nodes of the
cluster (“slave” nodes). The full exploitation of the processing power of all the nodes in the cluster
dictates that the master node should act as a slave too. The cluster of nodes is physically located
in a confined space, i.e., a computer room. The nodes are attached to a local area network (LAN)
capable of transmitting data at the rate of 1 Gbps.

Tuning Hadoop Parameters: The number of reduce tasks is defined to be equal to R = 100
which is a reasonable multiple of the number of slave machines we are using. However, the value
of the user-defined parameter that defines the number of map tasks per executed job, M, may be
ignored, since this value is driven by the total size of the inputs. Thus, its value cannot be known in
advance, especially in the case of the map reduce job associated with the second join operation in
the algorithm that performs the join R ./ S ./ T as a cascade of two two-way joins. Given that the
configurable parameter b that defines the maximum size of each input split stored in the distributed
file system has a direct effect on the number of spawned map tasks, the experience shows that the
most appropriate and “fair” value for the benchmarking analysis of the two join algorithms seems
to be b = 128 MB. The “fair” value is chosen in the sense that the number of Map tasks in the
3-way computation of join and the number of Map tasks in each join operation of the two 2-way
joins should be comparable.

27

6 Related Work

Optimization techniques for the evaluation of join queries in parallel environments has been studied
in various settings. Several (e.g., see [DH08] and references therein) consider piplelined parallelism,
which uses a limited number of processors since the parallelism involves assigning a different pro-
cessor to each operator in the query. Adaptive techniques have been proposed to overcome the
bottleneck of one processor being overworked, while the other processors are idle for a long time
[AH00]. Adaptive techniques for queries over stream data are considered in [MSHR02, BMWM05]
and for data integration in [IFF+99]. In [SMWM06], query optimization is investigated in a simi-
lar setting, where, however, each Web service is viewed as a different processor. With a different
goal — maximizing the output rate of join queries over streaming data to address the problem
of computing a prefix of the query output as soon as possible — the problem is investigated in
[VNB03]. The problem of partitioning efficiently the data among a given (possibly large) number
of processors has been addressed in [RC09, DNSS92].

Several works have noticed and investigated issues that concern the computation of an n-way
join as such, i.e., by avoiding the computation of each join operator separately but rather joining
n matching tuples in one multi-tuple operation. Such works include [TL91, VNB03, BW04].

The multiway join operator has been considered in [VNB03] for processing streaming data.
There, the approach of allowing non-binary trees is taken because a) an arrival from any input
source can generate results in one step, without having to pass these results in a multistage binary
execution pipeline and b) the operator is completely symmetric with respect to its inputs, hence, it
is not necessary to restructure a query plan, e.g., in response to changing input arrival rates. Tree-
based techniques for executing a multiway join operator for both select-project-join and recursive
queries are developed in [Jac93].

7 Conclusions and Open Questions

We have demonstrated that in some situations it is more efficient to implement a multiway join as
a single map-reduce process than as a cascade of 2-way joins. We gave an algorithm that optimizes
the multiway join by minimizing the amount of replication of tuples from the input data. For
the important special cases of chain joins and star joins, we offered closed-form solutions to the
optimization problem.

There is more work to do along these lines. We suggest the following:

1. Since the more relations we join in one step, the higher the degree of replication of tuples that
is necessary, we doubt that it ever makes sense to join very many relations in one step. More
likely, a query optimizer needs to treat 3-way and perhaps slightly larger joins as elements of
query plans, and build an overall join plan from these and conventional 2-way joins. It would
be interesting to develop a closed form for optimum query plans, especially for simple special
cases such as long chain joins.

2. Because of the possibility of sums of terms equal to 0 in the Lagrangean equations, the algo-
rithm we propose is worst-case exponential in the number of attributes. Is this exponentiality
inherent, or can the problem be avoided somehow.

Acknowledgment We would like to thank Raghotham Murthy, Chris Olston, and Jennifer

28

Widom for their advice and suggestions in connection with this work. Also we thank Victor
Kyritsis for running the experiments.

References

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query process-
ing. In SIGMOD Conference, pages 261–272, 2000.

[Apa06] Apache. Hadoop. http://hadoop.apache.org/, 2006.

[BMWM05] Shivnath Babu, Kamesh Munagala, Jennifer Widom, and Rajeev Motwani. Adaptive
caching for continuous queries. In ICDE, pages 118–129, 2005.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks, 30(1-7):107–117, 1998.

[BW04] Shivnath Babu and Jennifer Widom. Streamon: an adaptive engine for stream query
processing. In SIGMOD Conference, pages 931–932, New York, NY, USA, 2004. ACM.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2),
2008.

[CRS+08] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
Pnuts: Yahoo!’s hosted data serving platform. PVLDB, 1(2):1277–1288, 2008.

[cYDHP07] Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-
merge: simplified relational data processing on large clusters. In SIGMOD Conference,
pages 1029–1040, New York, NY, USA, 2007. ACM.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, 2008.

[DH08] Amol Deshpande and Lisa Hellerstein. Flow algorithms for parallel query optimization.
In ICDE, pages 754–763, 2008.

[DNSS92] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri. Prac-
tical skew handling in parallel joins. In VLDB, pages 27–40, 1992.

[DPR+08] David J. DeWitt, Erik Paulson, Eric Robinson, Jeffrey F. Naughton, Joshua Royalty,
Srinath Shankar, and Andrew Krioukov. Clustera: an integrated computation and
data management system. PVLDB, 1(1):28–41, 2008.

[GGL03] Sanjay Ghemawat, Howard Gobioff, , and Shun-Tak Leung. The google file system.
In 19th ACM Symposium on Operating Systems Principles, 2003.

[GMUW08] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems:
The Complete Book. Pearson Prentice Hall, 2008.

[IFF+99] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Y. Levy, and Daniel S. Weld.
An adaptive query execution system for data integration. In SIGMOD Conference,
pages 299–310, 1999.

29

[Jac93] Hakan Jacobsson. Tree-based techniques for query evaluation. Ph.D. thesis, Dept. of
CS, Stanford Univ., Stanford CA USA, STAN-CS-93-1492, 1993.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46:668–677, 1999.

[MSHR02] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar Raman.
Continuously adaptive continuous queries over streams. In SIGMOD Conference, pages
49–60, 2002.

[ORS+08] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig latin: a not-so-foreign language for data processing. In SIGMOD Con-
ference, pages 1099–1110, 2008.

[RC09] Kenneth A. Ross and John Cieslewicz. Optimal splitters for database partitioning
with size bounds. In ICDT, pages 98–110, New York, NY, USA, 2009. ACM.

[SMWM06] Utkarsh Srivastava, Kamesh Munagala, Jennifer Widom, and Rajeev Motwani. Query
optimization over web services. In VLDB, pages 355–366, 2006.

[TL91] Kian-Lee Tan and Hongjun Lu. A note on the strategy space of multiway join query
optimization problem in parallel systems. SIGMOD Rec., 20(4):81–82, 1991.

[VNB03] Stratis D. Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output
rate of multi-way join queries over streaming information sources. In VLDB, pages
285–296, 2003.

A Proof of Theorem 3.1

Proof: Suppose there is a sum-of-terms = 0. Then according to Lemma 3.1, there are Sai , Sbi
,

and positive integers mi, ni such that the following are true:

1. Σµ
i=1miSai = Σν

i=1niSbi , where all the terms of the right hand side of the equation are canceled
by terms of the left hand side.

2. Σµ
i=1mi = Σν

i=1ni

Suppose there is no conditionally optimal solution a′0, b′0, . . . where one of the a′0, b′0, . . . is equal
to 1. Towards contradiction, we shall prove that there is a transformation of the share variables
values that sets one of them to 1, sets none to a value less than 1, and does not increase the cost.
Hence we will provide proof that there is a conditionally optimal solution with one of the share
values equal to 1.

Now we describe the transformation. We refer, for the rest of the proof, to the equations
above and to a set of values of ai’s and bj ’s in a conditionally optimal solution. By applying the
transformation, we derive a new set of ai’s and bj ’s (denoted a′i’s and b′j ’s) that do not increase the
cost and such that one of the ai’s is equal to 1.

Choose c to be that share variable aj such that

(aj)1/mj = min
i

(ai)1/mi

30

In case of a tie, any such aj may be picked. In an abuse of notation, we shall henceforth refer to
the coefficient mj such that c is aj as mc. We transform the share variables as follows:

1. a′i = ai/cmi/mc for all i.

2. b′k = bkc
nk/mc for all k.

Note that (1) sets c to 1, since when i is that j such that c is aj , we set a′j to aj/(aj)mc/mc = 1.

We claim that no share variable is given a value less than 1 by the above transformation. Since
c ≥ 1, surely no bk is set to a value less than 1. The proof for the a′i’s is as follows. We know that
for all i, c1/mc ≤ (ai)1/mi . Raise both sides to the power mi to conclude that cmi/mc ≤ ai. Thus,
ai/cmi/mc ≥ 1, and this expression is exactly the value of a′i, the new value of ai.

We further claim that by this transformation the cost expression does not grow. Notice that
only terms including some bj may grow, because by the transformation other shares either remain
the same or decrease. Thus, let τ be a term of the cost expression that contains some bi as a factor.
Suppose τ = tΠi∈IaiΠj∈Jbj , where t contains only factors that are neither ai’s nor bj ’s. Note that
the size of the relation that gives rise to term τ is a factor of t.

Thus term τ appears in several Sai ’s and Sbj ’s. Specifically, it appears in all Sai ’s with i in I
and in all Sbj ’s with j in J . Thus, if we sum up the coefficients nj of τ on the right-hand side of
Equation (1) we have Σj∈Jnj . Similarly, if we sum up the coefficients mi of τ on the left hand side
of equation (1) we have Σi∈Imi. According to Lemma 3.1, τ must be canceled from the right hand
side, hence the following holds:

Σj∈Jnj ≤ Σi∈Imi (1)

After the transformation, τ becomes: τ ′ = tΠi∈Ia
′
iΠj∈Jb′j . Replacing in τ ′ the share variables

according to the transformation we get:

τ ′ = tΠi∈Iai/cmi/mcΠj∈Jbjc
nj/mc

Finally we have
τ ′ = c(Σj∈Jnj−Σi∈Imi)/mctΠi∈IaiΠj∈Jbj

According to inequality (1), the factor c(Σj∈Jnj−Σi∈Imi)/mc is less than or equal to 1, hence τ ′ ≤ τ .

B Solving for shares ≥ 1

If we solve the Lagrangean equations, it may happen that some shares get values less than 1. Here
we show how we deal with these cases.

Convention:

• By local optimal we refer to a local optimal of the cost expression over all real values and
under the constraint that the product of all shares is equal to a certain given number. I.e.,
in a local optimal the Lagrangean equations are satisfied.

31

The lemma below essentially says that if a share is found less than one in a globally optimal
solution then we may set it equal to one in order to find a conditionally optimal solution. For clarity
the statement of the lemma says something weaker which still gives a simple algorithm (similar to
the one in Section 3.6.3) but its proof actually proves that the stronger statement holds.

Lemma B.1 Suppose that a conditionally optimal solution does not coincide with one of the local
minima of the cost expression. Then at this conditionally optimal solution the following happens:
At least one of the shares is equal to 1. 2

Proof: Recall that Sa denotes the sum of terms in the cost expression that contain variable a as
a factor. Now we define Ta,6b to be the sum of terms of Sa that do not contain the variable b. We
also define Ta,b to be the sum of terms of Sa that contain both variables a and b. Thus we have
that Sa = Ta,6b + Ta,b. Similarly we have Sb = Tb,6a + Tb,a. Note that Ta,b = Tb,a.

Thus Ta,6b can be written as Ta,6b = af1 where f1 does not contain either a or b. Similarly
Tb, 6a = bf2 where f2 does not contain either a or b. (Recall that in the equations we construct from
the Lagrangean, we have one equation Sa = Sb which is equivalent to Ta,6b = Tb, 6a because Ta,b = Tb,a

and hence are canceled on both sides.)

Suppose a0, b0, ... is an optimal solution over all sets that have shares ≥ 1. Suppose also that
a0, b0, ... is not a locally optimal solution. We denote by Ta0 the value of the expression Ta,6b for
a = a0, b = b0, Similarly we denote by Tb0 the value of the expression Tb,6a for a = a0, b = b0,
We denote by f0

i the value of fi for a = a0, b = b0, Then the following claim is true.

Claim: There is at least one pair of values in a0, b0, ..., say w.l.o.g. that this is a0, b0, such that
a) Ta0 6= Tb0 (or equivalently and more conveniently a0f

0
1 6= b0f

0
2) and b) either γf0

2 /f0
1 < 1 or

γf0
1 /f0

2 < 1 where γ = a0b0.

Before we continue with the proof of the Claim and the rest of the proof of the lemma we give
some intuition in this paragraph. Since the conditionally optimal solution does not happen at a
local minimum, it follows that one of the Lagrangean equations does not hold at a0, b0, Thus
there are a0, b0 such that a0f

0
1 6= b0f

0
2 . However this is not enough. We also need the fact that if

the Lagrangean equations are true, then some of the a0, b0, ... are less than 1. Thus, if we abuse
notation and formality, we may imagine that if a0f

0
1 = b0f

0
2 then we get a2

0 = a0b0f
0
2 /f0

1 . This
indicates that we may claim that a0 = (a0b0f

0
2 /f0

1)1/2 < 1. It turns out that such a claim can be
made formal and can help derive the formal proof of the lemma.

Proof of the claim: Suppose the claim does not hold. Then, refuting the claim, means that
either of the following holds:

1. All the equations a0f
0
1 = b0f

0
2 are true (i.e., for all shares c0, d0, etc). This is a contradiction

because we assumed that the solution a0, b0... is not in a local optimal without the constraint that
all shares are at least equal to 1; and we know that when these equations are true then we have a
local optimal.

2. For any case where a0f
0
1 6= b0f

0
2 we have both γf0

2 /f0
1 ≥ 1 and γf0

1 /f0
2 ≥ 1. But this is a

contradiction because if we replace a0, b0 by a′0 = (γf0
2 /f0

1)1/2 and b′0 = (γf0
1 /f0

2)1/2 respectively
then the cost expression decreases. (Note that a′0 6= a0 and b′0 6= b0 because otherwise a0f

0
1 = b0f

0
2 .)

The reason that the cost expression decreases is as follows: First note that all we have to prove is
that the expression Tb,6a + Ta,6b = bf2 + af1 decreases. We need to focus only in this subexpression
of the cost expression because we keep the values of the other attribute shares the same and Ta,b

32

and Tb,a remain the same because a0b0 = a′0b′0. Thus we need to prove that

(γf0
2 /f0

1)1/2f0
1 + (γf0

1 /f0
2)1/2f0

2 < a0f
0
1 + b0f

0
2

or equivalently that:
(γf0

2 f0
1)1/2 + (γf0

1 f0
2)1/2 < a0f

0
1 + b0f

0
2

or equivalently that (after dividing by (γf0
2 f0

1)1/2):

2 < (a0f
0
1 /(b0f

0
2))1/2 + (a0f

0
1 /(b0f

0
2))−1/2

Now we set x = (a0f
0
1 /(b0f

0
2))1/2 (remember that a0f

0
1 6= b0f

0
2 , hence x 6= 1) and we want to prove

that:
2 < x + 1/x

for positive x. This can be equivalently written as: 0 < x2 + 1− 2x = (x− 1)2 which is true.

Now we use the claim to argue that if we replace a0 and b0 by a′0 = 1 and b′ = a0b0 = γ
(or symmetrically b′0 = 1 etc... but it does not change anything) then the cost expression does
not increase. The reason is that under the assumption that γf0

2 /f0
1 < 1 we can easily prove that

f0
1 + a0b0f

0
2 ≤ a0f

0
1 + b0f

0
2 . To prove, we set: x = f0

1 /(b0f
0
2) and y = a0. Notice that since

a0b0f
0
2 /f0

1 < 1 we have that x = f0
1 /(b0f

0
2) > a0 ≥ 1. Also y = a0 ≥ 1. Now we want to prove

equivalently that: x + y ≤ xy + 1 or equivalently 0 ≤ (x− 1)(y − 1) which is true for x, y ≥ 1.

33

