
Clocks, Event Ordering, and
Global Predicate Computation

Events and Histories
Processes execute sequences of events

Events can be of 3 types: local, send, and receive

 is the -th event of process

The local history of process is the sequence
of events executed by process

hp

e
i
p p

p

p

i

Ordering events

Observation 1:

Events in a local history are totally ordered

Observation 2:

For every message , precedes

time
pi

time
pi

time

m receive(m)send(m)

m

pj

Lamport Clock:
Increment Rules

e
i
p e

i+1
p

p

e
i
p

e
j
q

p

q

LC(ei+1
p) = LC(ei

p) + 1

LC(ej
q) = max(LC(ej−1

q), LC(ei
p)) + 1

Timestamp with m TS(m) = LC(send(m))

Example of Global
Predicate

Setting: Locks in distributed system

Objects locked by nodes and moved to the
node that is currently modifying it

Nodes requesting the object/lock, send a
message to the current node locking it
and blocks for a response

Discussion

How do we detect deadlocks in this scenario?

What are the strengths of Lamport clocks?

What are the limitations of Lamport clocks?

Global States & Clocks

Need to reason about global states of a
distributed system

Global state: processor state + communication
channel state

Consistent global state: causal dependencies are
captured

Use virtual clocks to reason about the timing
relationships between events on different nodes

Space-Time diagrams

A graphic representation of a distributed execution
time

p1

p2
p3

p1

p2

p3

H and impose a partial order→

A cut C is a subset of the global history of H

The frontier of C is the set of events

Cuts

p1

p2

p3

e
c1

1
, e

c2

2
, . . . e

cn

n

Consistent cuts and
consistent global states

A cut is consistent if

A consistent global state is one corresponding
to a consistent cut

∀ei, ej : ej ∈ C ∧ ei → ej ⇒ ei ∈ C

What sees

Not a consistent global state: the cut contains
the event corresponding to the receipt of the
last message by but not the corresponding
send event

p1

p2

p3

p3

p0

Global Consistent States

Can we use Lamport Clocks as part of a
mechanism to get globally consistent states?

Global Snapshot

Develop a simple global snapshot protocol

Refine protocol as we relax assumptions

Record:

processor states

channel states

Assumptions:

FIFO channels

Each timestamped with m T (send(m))

Snapshot I
i. selects

ii. sends “take a snapshot at ” to all processes

iii.when clock of reads then
records its local state
sends an empty message along its outgoing channels
starts recording messages received on each of incoming
channels
stops recording a channel when it receives first message
with timestamp greater than or equal to

p0 tss

p0 tss

tss

tss

pi

σi

Snapshot II

processor selects

 sends “take a snapshot at ” to all processes; it waits for
all of them to reply and then sets its logical clock to

when clock of reads then

records its local state

sends an empty message along its outgoing channels

starts recording messages received on each incoming
channel

stops recording a channel when receives first message
with timestamp greater than or equal to

Ωp0

σi

p0

Ω

Ω

Ω

Ωpi pi

Relaxing synchrony

Process does nothing
for the protocol
during this time!

pi

 take a
snapshot at Ω

empty message:
TS(m) ≥ Ω

monitors

channels records

local state σi

sends empty message:
TS(m) ≥ Ω

Snapshot III
processor sends itself “take a snapshot “

when receives “take a snapshot” for the first time from :

records its local state

sends “take a snapshot” along its outgoing channels

sets channel from to empty

starts recording messages received over each of its other incoming
channels

when receives “take a snapshot” beyond the first time from :

stops recording channel from

when has received “take a snapshot” on all channels, it sends
 collected state to and stops.

p0

pi pj

σi

pkpi

pi

pj

pk

p0

Same problem,
different approach

Monitor process does not query explicitly

Instead, it passively collects information and
uses it to build an observation.

It uses “vector clocks”

Update rules

pi

pi

ei

m

ei

Message is
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1

Example

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

Operational
interpretation

= no. of events executed by up to and including

= no. of events executed by that happen before of

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

pj piei

VC properties:
event ordering

Given two vectors and , less than is defined as:

Strong Clock Condition:

Simple Strong Clock Condition:

 Given of and of , where

Concurrency

 Given of and of , where

V V
′

V < V
′ ≡ (V ̸= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

ei ∥ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i ̸= j

ei pi pjej i ̸= j

e → e
′
≡ V C(e) < V C(e′)

The protocol

 maintains an array of counters

 where is the last
message delivered from

Rule: Deliver from as soon as both of
the following conditions are satisfied:

p0 D[1, . . . , n]

D[i] = TS(mi)[i] mi

pi

D[j] = TS(m)[j] − 1

D[k] ≥ TS(m)[k],∀k ̸= j

m pj

Summary

Lamport clocks and vector clocks provide us
with good tools to reason about timing of
events in a distributed system

Global snapshot algorithm provides us with
an efficient mechanism for obtaining
consistent global states

