
Distributed Hash Tables

What is a DHT?

• Hash Table
• data structure that maps “keys” to “values”

• essential building block in software systems

• Distributed Hash Table (DHT)
• similar, but spread across many hosts

• Interface
• insert(key, value)

• lookup(key)

How do DHTs work?

Every DHT node supports a single operation:

• Given key as input; route messages to node
holding key

• DHTs are content-addressable

Fundamental Design Idea I
• Consistent Hashing

• Map keys and nodes to an identifier space; implicit
assignment of responsibility

Identifiers
A C DB

Key

Mapping performed using hash functions (e.g., SHA-1)

11111111110000000000

• What is the advantage of consistent hashing?

Fundamental Design Idea II

• Prefix / Hypercube routing

Source

Destination

How to design a DHT?

• State Assignment:
• what “(key, value) tables” does a node store?

• Network Topology:
• how does a node select its neighbors?

• Routing Algorithm:
• which neighbor to pick while routing to a destination?

• Various DHT algorithms make different choices
• CAN, Chord, Pastry, Tapestry, Plaxton, Viceroy, Kademlia,

Skipnet, Symphony, Koorde, Apocrypha, Land, ORDI …

State Assignment in Chord

• Nodes are randomly chosen points on a clock-wise
ring of values

• Each node stores the id space (values) between
itself and its predecessor

 d(100, 111) = 3

000

101

100

011

010

001

110

111

Chord Topology and Route Selection

• Neighbor selection: ith neighbor at 2i distance

• Route selection: pick neighbor closest to
destination

000

101

100

011

010

001

110

111 d(000, 001) = 1

 d(000, 010) = 2

 d(000, 001) = 4

110

Issues

• How do you characterize the performance of
DHTs?

Issues

• How do you improve the performance of
DHTs?

Issues

• What are the fault tolerance/correctness
issues?

Issues

• What are the security issues?

Issues

• What are the load balance issues?

