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Prelude: Systems Projects at Google Seattle and Kirkland

Seattle:
● Chrome Cloud (incl. Flywheel)

○ (Matt Welch)
● Flume / Dataflow / Apache Beam

○ (Craig Chambers)
● Compute Engine VM Hypervisor

○ (Mike Dahlin)
● Kubernetes + Container Engine

○ (Alex Mohr)
● App Engine Flex

○ (Tomas Isdal)
● Cloud Storage

○ (?)
● $FOO

○ (Michael Piatek)

Kirkland:
● Cloud Machine Learning

○ (Mona Attariyan)
● Spanner

○ (?)
● Compute Engine’s Control Plane

○ (Mike Dahlin)
● Compute Engine’s Persistent Disk

○ (?)
● Thialfi notifications

○ (Atul Adya)

These are some of the (public) projects explicitly focused 
on systems.  Other areas require systems knowledge too!
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What are Containers?  (Part 1: the Runtime)

Virtualize the kernel’s syscall interface
• no guest OS or hypervisor as with VMs

Isolation (from each other and from the host)
• chroots
• namespaces
• cgroups

Packaging
• hermetically sealed bundles
• no external dependencies
• no DLL hell
• portable from dev laptop to on-prem & clouds

libs

app

kernel

libs

app

libs

app

libs

app



 Google Cloud Platform

What are Containers?  (Part 2: Building an Image)

% cat - > Dockerfile
  FROM node:4.4
EXPOSE 8080
COPY server.js .
CMD node server.js
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What are Containers?  (Part 2: Building an Image)

% cat Dockerfile
  FROM node:4.4
EXPOSE 8080
COPY server.js .
CMD node server.js

% docker build -t gcr.io/mohr-dev/hello-node:v1 .
[log spam]
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What are Containers?  (Part 2: Building an Image)

% cat Dockerfile
  FROM node:4.4
EXPOSE 8080
COPY server.js .
CMD node server.js

% docker build -t gcr.io/mohr-dev/hello-node:v1 .
[log spam]
% docker run -d -p 8080:8080 --name hello_tutorial gcr.io/mohr-dev/hello-node:v1
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What are Containers?  (Part 2: Building an Image)

% cat Dockerfile
  FROM node:4.4
EXPOSE 8080
COPY server.js .
CMD node server.js

% docker build -t gcr.io/mohr-dev/hello-node:v1 .
[log spam]
% docker run -d -p 8080:8080 --name hello_tutorial gcr.io/mohr-dev/hello-node:v1
% curl http://localhost:8080/
Hello World!

http://localhost:8080/
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What are Containers?  (Part 3: Shipping an Image)

The magic:
% gcloud docker --authorize-only
% docker push gcr.io/mohr-dev/hellonode:v1
The push refers to a repository [gcr.io/mohr-dev/hellonode] (len: 1)
[...]
v1: digest: sha256:d2f8b1387c535de6d6752a7c02c107576e86f9435d275be861fa8c6df5a29c4d size: 12985
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What are Containers?  (Part 3: Shipping an Image)

The magic:
% gcloud docker --authorize-only
% docker push gcr.io/mohr-dev/hellonode:v1
The push refers to a repository [gcr.io/mohr-dev/hellonode] (len: 1)
[...]
v1: digest: sha256:d2f8b1387c535de6d6752a7c02c107576e86f9435d275be861fa8c6df5a29c4d size: 12985

Then, from any other machine:
% docker pull gcr.io/mohr-dev/hellonode:v1
v1: Pulling from mohr-dev/hellonode
Digest: sha256:d2f8b1387c535de6d6752a7c02c107576e86f9435d275be861fa8c6df5a29c4d
Status: Image is up to date for gcr.io/mohr-dev/hellonode:v1
% docker run $ARGS gcr.io/mohr-dev/hellonode:v1
...
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A 2000-machine cluster will have 
1 to 10 machine failures per day.
This is not a problem: it's normal.

  Failures
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Greek for “Helmsman”; also the root of the 
words “governor” and “cybernetic”

• Manages container clusters

• Inspired and informed by Google’s experiences 
and internal systems

• Supports multiple cloud and bare-metal 
environments

• Supports multiple container runtimes

• 100% Open source, written in Go

Manage applications, not machines

Kubernetes
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      UI

           API
Container

Cluster

All you really care about
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kubelet

   

       UI

kubelet           CLI

                 API

users master nodes

etcd

kubelet

scheduler

controllers

apiserver

The 10000 foot view
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Container clusters: A story in two parts
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1.  Setting up the cluster
• Choose a cloud: GCE, AWS, Azure, Rackspace, on-premises, ...
• Choose a node OS: CoreOS, Atomic, RHEL, Debian, CentOS, Ubuntu, ...
• Provision machines: Boot VMs, install and run kube components, ...
• Configure networking: IP ranges for Pods, Services, SDN, ...
• Start cluster services: DNS, logging, monitoring, ...
• Manage nodes: kernel upgrades, OS updates, hardware failures...

Not the easy or fun part, but unavoidable 

This is where things like Google Container Engine (GKE) really help

Container clusters: A story in two parts
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2.  Using the cluster
• Run Pods & Containers
• ReplicaSets & Deployments & DaemonSets & StatefulSets
• Services & Volumes & Secrets & Autoscalers

This is the fun part!

A distinct set of problems from cluster setup and management

Don’t make developers deal with cluster administration!

Accelerate development by focusing on the applications, not the cluster
 

Container clusters: A story in two parts
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Kubernetes: a Cloud OS?

Perhaps grandiose, but attempts at “Cloud OS” primitives:
● Scheduling: Decide where my containers should run
● Lifecycle and health: Keep my containers running despite 

failures
● Scaling: Make sets of containers bigger or smaller
● Naming and discovery: Find where my containers are now
● Load balancing: Distribute traffic across a set of containers
● Storage volumes: Provide data to containers
● Logging and monitoring: Track what’s happening with my 

containers
● Debugging and introspection: Enter or attach to containers
● Identity and authorization: Control who can do things to 

my containers
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Goal: Avoid vendor lock-in

Runs in many environments, including 
“bare metal” and “your laptop”

The API and the implementation are 
100% open

The whole system is modular and 
replaceable

Workload portability
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Goal: Write once, run anywhere*

Don’t force apps to know about 
concepts that are 
cloud-provider-specific

Examples of this:
● Network model
● Ingress
● Service load-balancers
● PersistentVolumes

* approximately

Workload portability
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Result: Portability

Build your apps on-prem, lift-and-shift 
into cloud when you are ready

Don’t get stuck with a platform that 
doesn’t work for you

Put your app on wheels and move it 
whenever and wherever you need

Workload portability
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172.16.1.1

172.16.1.2

172.16.1.1

172.16.1.1

Docker networking



 Google Cloud Platform

172.16.1.1

172.16.1.2

172.16.1.1

172.16.1.1

NAT

NAT

NAT

NAT

NAT

Docker networking
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A: 172.16.1.1

3306

B: 172.16.1.2

80

9376

11878SNAT

SNAT
C: 172.16.1.1

8000

Port mapping
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A: 172.16.1.1

3306

B: 172.16.1.2

80

9376

11878SNAT

SNAT
C: 172.16.1.1

8000REJEC
TED

Port mapping
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IPs are cluster-scoped
• vs docker default private IP

Pods can reach each other directly
• even across nodes

No brokering of port numbers
• too complex, why bother?

This is a fundamental requirement
• can be L3 routed
• can be underlayed (cloud)
• can be overlayed (SDN)

Kubernetes networking
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10.1.1.0/24

10.1.1.1

10.1.1.2

10.1.2.0/24
10.1.2.1

10.1.3.0/24

10.1.3.1

Kubernetes networking
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Small group of containers & volumes

Tightly coupled

The atom of scheduling & placement

Shared namespace
• share IP address & localhost
• share IPC, etc.

Managed lifecycle
• bound to a node, restart in place
• can die, cannot be reborn with same ID

Example: data puller & web server

ConsumersContent 
Manager

      File   
           Puller

      Web
          Server

Volume

Pod

Pods
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Pod-scoped storage

Support many types of volume plugins
• Empty dir (and tmpfs)
• Host path
• Git repository
• GCE Persistent Disk
• AWS Elastic Block Store
• Azure File Storage
• iSCSI
• Flocker
• NFS

• vSphere
• GlusterFS
• Ceph File and RBD
• Cinder
• FibreChannel
• Secret, ConfigMap, 

DownwardAPI
• Flex (exec a binary)
• ...

Volumes
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Arbitrary metadata

Attached to any API object

Generally represent identity

Queryable by selectors
• think SQL ‘select ... where ...’

The only grouping mechanism
• pods under a ReplicaSet
• pods in a Service
• capabilities of a node (constraints)

Labels
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App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

Selectors
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App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

App = MyApp

Selectors
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App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

App = MyApp, Role = FE

Selectors
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App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

App = MyApp, Role = BE

Selectors
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App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

App = MyApp, Phase = prod

Selectors
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App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

App = MyApp, Phase = test

Selectors
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A simple control loop

Runs out-of-process wrt API server

One job: ensure N copies of a pod
• grouped by a selector
• too few? start some
• too many? kill some

Layered on top of the public Pod API

Replicated pods are fungible
• No implied order or identity

ReplicaSet
- name = “my-rc”
- selector = {“App”: “MyApp”}
- template = { ... }
- replicas = 4

API Server

How 
many?

3

Start 1 
more

OK

How 
many?

4

ReplicaSets
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Drive current state -> desired state

Act independently

APIs - no shortcuts or back doors

Observed state is truth*

Recurring pattern in the system

Example: ReplicaSet

observe

diff

act

Control loops: the Reconciler Pattern

* Observations are really stale caches of what once was your view of truth.
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A group of pods that work together
• grouped by a selector

Defines access policy
• “load balanced” or “headless”

Can have a stable virtual IP and port
• also a DNS name

VIP is managed by kube-proxy
• watches all services
• updates iptables when backends change
• default implementation - can be replaced!

Hides complexity

Client

Virtual IP

Services
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iptables

kube-proxy apiserver
Node X

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

watch

services & 
endpoints

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

kubectl run ...

watch

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

schedule

watch

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

watch

kubectl expose ...

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

new 
service!

update

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

watch

configure

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

watch

   VIP

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

new 
endpoints!

update

   VIP

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

   VIP

watch

configure

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

   VIP

watch

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

   VIP

watch

Client

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

   VIP

watch

Client

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

   VIP

watch

Client

iptables kube-proxy
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iptables

kube-proxy apiserver
Node X

   VIP

watch

Client

iptables kube-proxy
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Services VIPs are only available inside the cluster

Need to receive traffic from “the outside world”

Service “type”
• NodePort: expose on a port on every node
• LoadBalancer: provision a cloud load-balancer

DiY load-balancer solutions
• socat (for nodePort remapping)
• haproxy
• nginx

Ingress (L7 LB)

External services
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Many apps are HTTP/HTTPS

Services are L4 (IP + port)

Ingress maps incoming traffic to backend 
services

• by HTTP host headers
• by HTTP URL paths

HAProxy, NGINX, AWS and GCE 
implementations in progress

Now with SSL!

Status: BETA in Kubernetes v1.2

Client

URL Map

Ingress (L7 LB)
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ReplicaSet
- name: my-app-v1
- replicas: 3
- selector:

- app: MyApp
- version: v1

Service
- app: MyApp

Rolling Update
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ReplicaSet
- name: my-app-v1
- replicas: 3
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 0
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update
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ReplicaSet
- name: my-app-v1
- replicas: 3
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 1
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update
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ReplicaSet
- name: my-app-v1
- replicas: 2
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 1
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update
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ReplicaSet
- name: my-app-v1
- replicas: 2
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 2
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update
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ReplicaSet
- name: my-app-v1
- replicas: 1
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 2
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update
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ReplicaSet
- name: my-app-v1
- replicas: 1
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 3
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update
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ReplicaSet
- name: my-app-v1
- replicas: 0
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 3
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update
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ReplicaSet
- name: my-app-v2
- replicas: 3
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update
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Updates-as-a-service
• Rolling update is imperative, client-side

Deployment manages replica changes for you
• stable object name
• updates are configurable, done server-side
• kubectl edit or kubectl apply

Aggregates stats

Can have multiple updates in flight

Status: BETA in Kubernetes v1.2 ...

Deployments
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Problem: how to run a Pod on every node?
• or a subset of nodes

Similar to ReplicaSet
• principle: do one thing, don’t overload

“Which nodes?” is a selector

Use familiar tools and patterns

Status: BETA in Kubernetes v1.2

Pod

DaemonSets
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Run-to-completion, as opposed to run-forever
• Express parallelism vs. required completions
• Workflow: restart on failure
• Build/test: don’t restart on failure

Aggregates success/failure counts

Built for batch and big-data work

Status: GA in Kubernetes v1.2

...

Jobs
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A higher-level storage abstraction
• insulation from any one cloud environment

Admin provisions them, users claim them
• NEW: auto-provisioning (alpha in v1.2)

Independent lifetime from consumers
• lives until user is done with it
• can be handed-off between pods

Dynamically “scheduled” and managed, like 
nodes and pods

Claim

PersistentVolumes
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Cluster 
Admin

PersistentVolumes
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 Provision

Cluster 
Admin

PersistentVolumes

PersistentVolumes
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User

Cluster 
Admin

PersistentVolumes

PersistentVolumes
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User

PVClaim

 Create

Cluster 
Admin

PersistentVolumes

PersistentVolumes
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User

PVClaim Binder

Cluster 
Admin

PersistentVolumes

PersistentVolumes
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User

PVClaim

Pod

 Create

Cluster 
Admin

PersistentVolumes

PersistentVolumes
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User

PVClaim

Pod

Cluster 
Admin

PersistentVolumes

*

PersistentVolumes
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User

PVClaim

Pod

 Delete

*
Cluster 
Admin

PersistentVolumes

*

PersistentVolumes
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User

PVClaim

Cluster 
Admin

PersistentVolumes

*

PersistentVolumes
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User

PVClaim

Pod

 Create

Cluster 
Admin

PersistentVolumes

*

PersistentVolumes
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User

PVClaim

Pod

Cluster 
Admin

PersistentVolumes

*

PersistentVolumes
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User

PVClaim

Pod

 Delete

Cluster 
Admin

PersistentVolumes

*

PersistentVolumes
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User

PVClaim

 Delete

Cluster 
Admin

PersistentVolumes

*

PersistentVolumes



 Google Cloud Platform

User

Recycler

Cluster 
Admin

PersistentVolumes

PersistentVolumes
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Goal: enable clustered software on Kubernetes
• mysql, redis, zookeeper, ...

Clustered apps need “identity” and sequencing 
guarantees

• stable hostname, available in DNS
• an ordinal index
• stable storage: linked to the ordinal & hostname
• discovery of peers for quorum
• startup/teardown ordering

Status: ALPHA in Kubernetes v1.3

StatefulSets
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Goal: manage app configuration
• ...without making  overly-brittle container images

12-factor says config comes from the 
environment

• Kubernetes is the environment

Manage config via the Kubernetes API

Inject config as a virtual volume into your Pods
• late-binding, live-updated (atomic)
• also available as env vars

Status: GA in Kubernetes v1.2

node

API

Pod Config
Map

ConfigMaps

http://12factor.net/
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Goal: grant a pod access to a secured something
• don’t put secrets in the container image!

12-factor says config comes from the 
environment

• Kubernetes is the environment

Manage secrets via the Kubernetes API

Inject secrets as virtual volumes into your Pods
• late-binding, tmpfs - never touches disk
• also available as env vars

node

API

Pod Secret

Secrets

http://12factor.net/
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Goal: Automatically scale pods as needed
• based on CPU utilization (for now)
• custom metrics in Alpha

Efficiency now, capacity when you need it

Operates within user-defined min/max bounds

Set it and forget it

Status: GA in Kubernetes v1.2 ...

Stats

HorizontalPodAutoScalers
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Goal: zone-fault tolerance for applications

Zero API changes relative to kubernetes
● Create services, ReplicaSets, etc. exactly as 

usual

Nodes and PersistentVolumes are labelled 
with their availability zone
● Fully automatic for GKE, GCE, AWS
● Manual for on-premise and other cloud 

providers (for now)

Status: GA in Kubernetes v1.2

Zone A

Zone C

Zone B

Federation 
Master

Multi-Zone Clusters

User
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Problem: I have too much stuff!
• name collisions in the API
• poor isolation between users
• don’t want to expose things like Secrets

Solution: Slice up the cluster
• create new Namespaces as needed

• per-user, per-app, per-department, etc.
• part of the API - NOT private machines
• most API objects are namespaced

• part of the REST URL path
• Namespaces are just another API object
• One-step cleanup - delete the Namespace
• Obvious hook for policy enforcement (e.g. quota)

Namespaces
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Principles:
• Apps must not be able to affect each other’s 

performance
• if so it is an isolation failure

• Repeated runs of the same app should see 
~equal behavior

• QoS levels drives resource decisions in (soft) 
real-time

• Correct in all cases, optimal in some
• reduce unreliable components

• SLOs are the lingua franca

Resource Isolation
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Pros:
• Sharing - users don’t worry about interference (aka the noisy neighbor problem)
• Predictable - allows us to offer strong SLAs to apps

Cons:
• Stranding - arbitrary slices mean some resources get lost
• Confusing - how do I know how much I need?

• analog: what size VM should I use?
• smart auto-scaling is needed!

• Expensive - you pay for certainty

In reality this is a multi-dimensional bin-packing problem: CPU, memory, disk 
space, IO bandwidth, network bandwidth, ...

Strong isolation
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Request:
• how much of a resource you are asking to use, with a 

strong guarantee of availability
• CPU (seconds/second)
• RAM (bytes)

• scheduler will not over-commit requests

Limit:
• max amount of a resource you can access

Repercussions:
• Usage > Request: resources might be available
• Usage > Limit: throttled or killed

Requests and Limits
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Defined in terms of Request and Limit

Guaranteed: highest protection
• request > 0 && limit == request

Burstable: medium protection
• request > 0 && limit > request

Best Effort: lowest protection
• request == 0

What does “protection” mean?
• OOM score
• CPU scheduling

Quality of Service
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Admission control: apply limits in aggregate

Per-namespace: ensure no 
user/app/department abuses the cluster

Reminiscent of disk quota by design

Applies to each type of resource
• CPU and memory for now

Disallows pods without resources

ResourceQuota
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Admission control: limit the limits
• min and max
• ratio of limit/request

Default values for unspecified limits

Per-namespace

Together with ResourceQuota gives cluster 
admins powerful tools

LimitRange
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Add nodes when needed
• there are pending pods
• some pending pods would fit if we add a node

Remove nodes when not needed
• after removal, all pods must fit remaining nodes

Status: Works on GCE, GKE and AWS

...

Cluster Autoscaler
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SLO met at <2000 nodes, <60000 pods
• 99% of API calls return in < 1 second
• 99% of pods start in < 5 seconds

Coming soon
• protobufs in API storage (already enabled on 

the wire)
• 5000 nodes

Scalability & Performance
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Declarative > imperative: State your desired results, let the system actuate

Control loops: Observe, rectify, repeat

Simple > Complex: Try to do as little as possible

Modularity: Components, interfaces, & plugins

Legacy compatible: Requiring apps to change is a non-starter

Network-centric: IP addresses are cheap

No grouping: Labels are the only groups

Sets > Pets: Manage your workload in bulk

Open > Closed: Open Source, standards, REST, JSON, etc.

Design principles



Kubernetes (K8s) Community

~5k Commits
in 1.4 over 3 

months

> 800 Unique
Contributors

Top 0.01% of 
all Github 
Projects

2500+ External
Projects Based 

on K8s

Companies 
Contributing

Companies 
Using
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“Niantic chose GKE for its ability to orchestrate their container 
cluster at planetary-scale, freeing its team to focus on deploying 
live changes for their players.” - Niantic 
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Further Reading
If this talk was interesting, deeper academic reading on cluster management:
“Borg, Omega, and Kubernetes”
ACM Queue, March 2, 2016, Volume 14, issue 1
http://queue.acm.org/detail.cfm?id=2898444

Or a hands-on “Hello World” quickstart to build a Docker image and run it on a 
Kubernetes cluster:

http://kubernetes.io/docs/hellonode/ 

Another hard problem: how do you run N Kubernetes clusters as a service?
• create/delete, update, monitor, repair, escalate, upgrade, backup/restore, zonal 

isolation, incremental rollouts, support ticket escalation, provisioning, and more!

http://queue.acm.org/issuedetail.cfm?issue=2898442
http://queue.acm.org/detail.cfm?id=2898444
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http://kubernetes.io/docs/hellonode/
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Questions?

Potential discussion:
• What about Docker Swarm?
• … Mesos?
• What’s next for Kubernetes and 

Container Engine?
• Why Google not FB/Uber/MS/Ama/etc?
• How do I get an internship / job?

• Let’s discuss!

More questions?
Happy to chat!
• Lunch
• 1:1’s after that
• mohr@google.com
• 590s@alexmohr.com 

• Alex on Philosophy:
• Imperative vs. declarative
• Orchestration vs. choreography
• Product vs. tech
• User guide vs. design doc
• Engineering code vs. organizations
• Your team is a design parameter
• Launch and iterate; MVP
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