
 Google Cloud Platform

logo

Kubernetes: Container
Orchestration and Micro-Services
University of Washington 590s
2016-11-16

Alexander Mohr <mohr@google.com>
Technical Lead / Manager on Google Container Engine and Kubernetes
Github: @alex-mohr Email: mohr@google.com

 Google Cloud Platform

Contents

1. Systems Projects at Google Seattle and Kirkland (2-3 mins)
2. Brief Docker Container Primer (5-10 mins)
3. Kubernetes: Container Orchestration (many mins)

Prelude: Systems Projects at Google Seattle and Kirkland

Seattle:
● Chrome Cloud (incl. Flywheel)

○ (Matt Welch)
● Flume / Dataflow / Apache Beam

○ (Craig Chambers)
● Compute Engine VM Hypervisor

○ (Mike Dahlin)
● Kubernetes + Container Engine

○ (Alex Mohr)
● App Engine Flex

○ (Tomas Isdal)
● Cloud Storage

○ (?)
● $FOO

○ (Michael Piatek)

Kirkland:
● Cloud Machine Learning

○ (Mona Attariyan)
● Spanner

○ (?)
● Compute Engine’s Control Plane

○ (Mike Dahlin)
● Compute Engine’s Persistent Disk

○ (?)
● Thialfi notifications

○ (Atul Adya)

These are some of the (public) projects explicitly focused
on systems. Other areas require systems knowledge too!

 Google Cloud Platform

Contents

1. Prelude: Systems Projects at Google Seattle and Kirkland
2. Brief Docker Container Primer

a. Runtime
b. Building Images
c. Shipping Images

3. Kubernetes: Container Orchestration

 Google Cloud Platform

What are Containers? (Part 1: the Runtime)

Virtualize the kernel’s syscall interface
• no guest OS or hypervisor as with VMs

Isolation (from each other and from the host)
• chroots
• namespaces
• cgroups

Packaging
• hermetically sealed bundles
• no external dependencies
• no DLL hell
• portable from dev laptop to on-prem & clouds

libs

app

kernel

libs

app

libs

app

libs

app

 Google Cloud Platform

What are Containers? (Part 2: Building an Image)

% cat - > Dockerfile
 FROM node:4.4
EXPOSE 8080
COPY server.js .
CMD node server.js

 Google Cloud Platform

What are Containers? (Part 2: Building an Image)

% cat Dockerfile
 FROM node:4.4
EXPOSE 8080
COPY server.js .
CMD node server.js

% docker build -t gcr.io/mohr-dev/hello-node:v1 .
[log spam]

 Google Cloud Platform

What are Containers? (Part 2: Building an Image)

% cat Dockerfile
 FROM node:4.4
EXPOSE 8080
COPY server.js .
CMD node server.js

% docker build -t gcr.io/mohr-dev/hello-node:v1 .
[log spam]
% docker run -d -p 8080:8080 --name hello_tutorial gcr.io/mohr-dev/hello-node:v1

 Google Cloud Platform

What are Containers? (Part 2: Building an Image)

% cat Dockerfile
 FROM node:4.4
EXPOSE 8080
COPY server.js .
CMD node server.js

% docker build -t gcr.io/mohr-dev/hello-node:v1 .
[log spam]
% docker run -d -p 8080:8080 --name hello_tutorial gcr.io/mohr-dev/hello-node:v1
% curl http://localhost:8080/
Hello World!

http://localhost:8080/

 Google Cloud Platform

What are Containers? (Part 3: Shipping an Image)

The magic:
% gcloud docker --authorize-only
% docker push gcr.io/mohr-dev/hellonode:v1
The push refers to a repository [gcr.io/mohr-dev/hellonode] (len: 1)
[...]
v1: digest: sha256:d2f8b1387c535de6d6752a7c02c107576e86f9435d275be861fa8c6df5a29c4d size: 12985

 Google Cloud Platform

What are Containers? (Part 3: Shipping an Image)

The magic:
% gcloud docker --authorize-only
% docker push gcr.io/mohr-dev/hellonode:v1
The push refers to a repository [gcr.io/mohr-dev/hellonode] (len: 1)
[...]
v1: digest: sha256:d2f8b1387c535de6d6752a7c02c107576e86f9435d275be861fa8c6df5a29c4d size: 12985

Then, from any other machine:
% docker pull gcr.io/mohr-dev/hellonode:v1
v1: Pulling from mohr-dev/hellonode
Digest: sha256:d2f8b1387c535de6d6752a7c02c107576e86f9435d275be861fa8c6df5a29c4d
Status: Image is up to date for gcr.io/mohr-dev/hellonode:v1
% docker run $ARGS gcr.io/mohr-dev/hellonode:v1
...

 Google Cloud Platform

Contents

1. Prelude: Systems Projects at Google Seattle and Kirkland
2. Brief Docker Container Primer
3. Kubernetes: Container Orchestration

 Image by Connie Zhou

 Images by Connie Zhou

A 2000-machine cluster will have
1 to 10 machine failures per day.
This is not a problem: it's normal.

 Failures

 Google Cloud Platform

Greek for “Helmsman”; also the root of the
words “governor” and “cybernetic”

• Manages container clusters

• Inspired and informed by Google’s experiences
and internal systems

• Supports multiple cloud and bare-metal
environments

• Supports multiple container runtimes

• 100% Open source, written in Go

Manage applications, not machines

Kubernetes

 Google Cloud Platform

 UI

 API
Container

Cluster

All you really care about

 Google Cloud Platform

kubelet

 UI

kubelet CLI

 API

users master nodes

etcd

kubelet

scheduler

controllers

apiserver

The 10000 foot view

 Google Cloud Platform

Container clusters: A story in two parts

 Google Cloud Platform

1. Setting up the cluster
• Choose a cloud: GCE, AWS, Azure, Rackspace, on-premises, ...
• Choose a node OS: CoreOS, Atomic, RHEL, Debian, CentOS, Ubuntu, ...
• Provision machines: Boot VMs, install and run kube components, ...
• Configure networking: IP ranges for Pods, Services, SDN, ...
• Start cluster services: DNS, logging, monitoring, ...
• Manage nodes: kernel upgrades, OS updates, hardware failures...

Not the easy or fun part, but unavoidable

This is where things like Google Container Engine (GKE) really help

Container clusters: A story in two parts

 Google Cloud Platform

2. Using the cluster
• Run Pods & Containers
• ReplicaSets & Deployments & DaemonSets & StatefulSets
• Services & Volumes & Secrets & Autoscalers

This is the fun part!

A distinct set of problems from cluster setup and management

Don’t make developers deal with cluster administration!

Accelerate development by focusing on the applications, not the cluster

Container clusters: A story in two parts

 Google Cloud Platform

Kubernetes: a Cloud OS?

Perhaps grandiose, but attempts at “Cloud OS” primitives:
● Scheduling: Decide where my containers should run
● Lifecycle and health: Keep my containers running despite

failures
● Scaling: Make sets of containers bigger or smaller
● Naming and discovery: Find where my containers are now
● Load balancing: Distribute traffic across a set of containers
● Storage volumes: Provide data to containers
● Logging and monitoring: Track what’s happening with my

containers
● Debugging and introspection: Enter or attach to containers
● Identity and authorization: Control who can do things to

my containers

 Google Cloud Platform

 Workload Portability

 Google Cloud Platform

Goal: Avoid vendor lock-in

Runs in many environments, including
“bare metal” and “your laptop”

The API and the implementation are
100% open

The whole system is modular and
replaceable

Workload portability

 Google Cloud Platform

Goal: Write once, run anywhere*

Don’t force apps to know about
concepts that are
cloud-provider-specific

Examples of this:
● Network model
● Ingress
● Service load-balancers
● PersistentVolumes

* approximately

Workload portability

 Google Cloud Platform

Result: Portability

Build your apps on-prem, lift-and-shift
into cloud when you are ready

Don’t get stuck with a platform that
doesn’t work for you

Put your app on wheels and move it
whenever and wherever you need

Workload portability

 Google Cloud Platform

 Networking

 Google Cloud Platform

172.16.1.1

172.16.1.2

172.16.1.1

172.16.1.1

Docker networking

 Google Cloud Platform

172.16.1.1

172.16.1.2

172.16.1.1

172.16.1.1

NAT

NAT

NAT

NAT

NAT

Docker networking

 Google Cloud Platform

A: 172.16.1.1

3306

B: 172.16.1.2

80

9376

11878SNAT

SNAT
C: 172.16.1.1

8000

Port mapping

 Google Cloud Platform

A: 172.16.1.1

3306

B: 172.16.1.2

80

9376

11878SNAT

SNAT
C: 172.16.1.1

8000REJEC
TED

Port mapping

 Google Cloud Platform

IPs are cluster-scoped
• vs docker default private IP

Pods can reach each other directly
• even across nodes

No brokering of port numbers
• too complex, why bother?

This is a fundamental requirement
• can be L3 routed
• can be underlayed (cloud)
• can be overlayed (SDN)

Kubernetes networking

 Google Cloud Platform

10.1.1.0/24

10.1.1.1

10.1.1.2

10.1.2.0/24
10.1.2.1

10.1.3.0/24

10.1.3.1

Kubernetes networking

 Google Cloud Platform

 Pods

 Google Cloud Platform

Small group of containers & volumes

Tightly coupled

The atom of scheduling & placement

Shared namespace
• share IP address & localhost
• share IPC, etc.

Managed lifecycle
• bound to a node, restart in place
• can die, cannot be reborn with same ID

Example: data puller & web server

ConsumersContent
Manager

 File
 Puller

 Web
 Server

Volume

Pod

Pods

 Google Cloud Platform

Pod-scoped storage

Support many types of volume plugins
• Empty dir (and tmpfs)
• Host path
• Git repository
• GCE Persistent Disk
• AWS Elastic Block Store
• Azure File Storage
• iSCSI
• Flocker
• NFS

• vSphere
• GlusterFS
• Ceph File and RBD
• Cinder
• FibreChannel
• Secret, ConfigMap,

DownwardAPI
• Flex (exec a binary)
• ...

Volumes

 Google Cloud Platform

 Labels & Selectors

 Google Cloud Platform

Arbitrary metadata

Attached to any API object

Generally represent identity

Queryable by selectors
• think SQL ‘select ... where ...’

The only grouping mechanism
• pods under a ReplicaSet
• pods in a Service
• capabilities of a node (constraints)

Labels

 Google Cloud Platform

App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

Selectors

 Google Cloud Platform

App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

App = MyApp

Selectors

 Google Cloud Platform

App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

App = MyApp, Role = FE

Selectors

 Google Cloud Platform

App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

App = MyApp, Role = BE

Selectors

 Google Cloud Platform

App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

App = MyApp, Phase = prod

Selectors

 Google Cloud Platform

App: MyApp

Phase: prod

Role: FE

App: MyApp

Phase: test

Role: FE

App: MyApp

Phase: prod

Role: BE

App: MyApp

Phase: test

Role: BE

App = MyApp, Phase = test

Selectors

 Google Cloud Platform

 Replication

 Google Cloud Platform

A simple control loop

Runs out-of-process wrt API server

One job: ensure N copies of a pod
• grouped by a selector
• too few? start some
• too many? kill some

Layered on top of the public Pod API

Replicated pods are fungible
• No implied order or identity

ReplicaSet
- name = “my-rc”
- selector = {“App”: “MyApp”}
- template = { ... }
- replicas = 4

API Server

How
many?

3

Start 1
more

OK

How
many?

4

ReplicaSets

 Google Cloud Platform

Drive current state -> desired state

Act independently

APIs - no shortcuts or back doors

Observed state is truth*

Recurring pattern in the system

Example: ReplicaSet

observe

diff

act

Control loops: the Reconciler Pattern

* Observations are really stale caches of what once was your view of truth.

 Google Cloud Platform

 Services

 Google Cloud Platform

A group of pods that work together
• grouped by a selector

Defines access policy
• “load balanced” or “headless”

Can have a stable virtual IP and port
• also a DNS name

VIP is managed by kube-proxy
• watches all services
• updates iptables when backends change
• default implementation - can be replaced!

Hides complexity

Client

Virtual IP

Services

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

watch

services &
endpoints

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

kubectl run ...

watch

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

schedule

watch

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

watch

kubectl expose ...

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

new
service!

update

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

watch

configure

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

watch

 VIP

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

new
endpoints!

update

 VIP

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

 VIP

watch

configure

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

 VIP

watch

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

 VIP

watch

Client

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

 VIP

watch

Client

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

 VIP

watch

Client

iptables kube-proxy

 Google Cloud Platform

iptables

kube-proxy apiserver
Node X

 VIP

watch

Client

iptables kube-proxy

 Google Cloud Platform

Services VIPs are only available inside the cluster

Need to receive traffic from “the outside world”

Service “type”
• NodePort: expose on a port on every node
• LoadBalancer: provision a cloud load-balancer

DiY load-balancer solutions
• socat (for nodePort remapping)
• haproxy
• nginx

Ingress (L7 LB)

External services

 Google Cloud Platform

Many apps are HTTP/HTTPS

Services are L4 (IP + port)

Ingress maps incoming traffic to backend
services

• by HTTP host headers
• by HTTP URL paths

HAProxy, NGINX, AWS and GCE
implementations in progress

Now with SSL!

Status: BETA in Kubernetes v1.2

Client

URL Map

Ingress (L7 LB)

 Google Cloud Platform

 Rolling Update

 Google Cloud Platform

ReplicaSet
- name: my-app-v1
- replicas: 3
- selector:

- app: MyApp
- version: v1

Service
- app: MyApp

Rolling Update

 Google Cloud Platform

ReplicaSet
- name: my-app-v1
- replicas: 3
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 0
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update

 Google Cloud Platform

ReplicaSet
- name: my-app-v1
- replicas: 3
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 1
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update

 Google Cloud Platform

ReplicaSet
- name: my-app-v1
- replicas: 2
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 1
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update

 Google Cloud Platform

ReplicaSet
- name: my-app-v1
- replicas: 2
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 2
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update

 Google Cloud Platform

ReplicaSet
- name: my-app-v1
- replicas: 1
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 2
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update

 Google Cloud Platform

ReplicaSet
- name: my-app-v1
- replicas: 1
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 3
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update

 Google Cloud Platform

ReplicaSet
- name: my-app-v1
- replicas: 0
- selector:

- app: MyApp
- version: v1

ReplicaSet
- name: my-app-v2
- replicas: 3
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update

 Google Cloud Platform

ReplicaSet
- name: my-app-v2
- replicas: 3
- selector:

- app: MyApp
- version: v2

Service
- app: MyApp

Rolling Update

 Google Cloud Platform

 Deployments

 Google Cloud Platform

Updates-as-a-service
• Rolling update is imperative, client-side

Deployment manages replica changes for you
• stable object name
• updates are configurable, done server-side
• kubectl edit or kubectl apply

Aggregates stats

Can have multiple updates in flight

Status: BETA in Kubernetes v1.2 ...

Deployments

 Google Cloud Platform

 DaemonSets

 Google Cloud Platform

Problem: how to run a Pod on every node?
• or a subset of nodes

Similar to ReplicaSet
• principle: do one thing, don’t overload

“Which nodes?” is a selector

Use familiar tools and patterns

Status: BETA in Kubernetes v1.2

Pod

DaemonSets

 Google Cloud Platform

 Jobs

 Google Cloud Platform

Run-to-completion, as opposed to run-forever
• Express parallelism vs. required completions
• Workflow: restart on failure
• Build/test: don’t restart on failure

Aggregates success/failure counts

Built for batch and big-data work

Status: GA in Kubernetes v1.2

...

Jobs

 Google Cloud Platform

 PersistentVolumes

 Google Cloud Platform

A higher-level storage abstraction
• insulation from any one cloud environment

Admin provisions them, users claim them
• NEW: auto-provisioning (alpha in v1.2)

Independent lifetime from consumers
• lives until user is done with it
• can be handed-off between pods

Dynamically “scheduled” and managed, like
nodes and pods

Claim

PersistentVolumes

 Google Cloud Platform

Cluster
Admin

PersistentVolumes

 Google Cloud Platform

 Provision

Cluster
Admin

PersistentVolumes

PersistentVolumes

 Google Cloud Platform

User

Cluster
Admin

PersistentVolumes

PersistentVolumes

 Google Cloud Platform

User

PVClaim

 Create

Cluster
Admin

PersistentVolumes

PersistentVolumes

 Google Cloud Platform

User

PVClaim Binder

Cluster
Admin

PersistentVolumes

PersistentVolumes

 Google Cloud Platform

User

PVClaim

Pod

 Create

Cluster
Admin

PersistentVolumes

PersistentVolumes

 Google Cloud Platform

User

PVClaim

Pod

Cluster
Admin

PersistentVolumes

*

PersistentVolumes

 Google Cloud Platform

User

PVClaim

Pod

 Delete

*
Cluster
Admin

PersistentVolumes

*

PersistentVolumes

 Google Cloud Platform

User

PVClaim

Cluster
Admin

PersistentVolumes

*

PersistentVolumes

 Google Cloud Platform

User

PVClaim

Pod

 Create

Cluster
Admin

PersistentVolumes

*

PersistentVolumes

 Google Cloud Platform

User

PVClaim

Pod

Cluster
Admin

PersistentVolumes

*

PersistentVolumes

 Google Cloud Platform

User

PVClaim

Pod

 Delete

Cluster
Admin

PersistentVolumes

*

PersistentVolumes

 Google Cloud Platform

User

PVClaim

 Delete

Cluster
Admin

PersistentVolumes

*

PersistentVolumes

 Google Cloud Platform

User

Recycler

Cluster
Admin

PersistentVolumes

PersistentVolumes

 Google Cloud Platform

 StatefulSets

 Google Cloud Platform

Goal: enable clustered software on Kubernetes
• mysql, redis, zookeeper, ...

Clustered apps need “identity” and sequencing
guarantees

• stable hostname, available in DNS
• an ordinal index
• stable storage: linked to the ordinal & hostname
• discovery of peers for quorum
• startup/teardown ordering

Status: ALPHA in Kubernetes v1.3

StatefulSets

 Google Cloud Platform

 ConfigMaps

 Google Cloud Platform

Goal: manage app configuration
• ...without making overly-brittle container images

12-factor says config comes from the
environment

• Kubernetes is the environment

Manage config via the Kubernetes API

Inject config as a virtual volume into your Pods
• late-binding, live-updated (atomic)
• also available as env vars

Status: GA in Kubernetes v1.2

node

API

Pod Config
Map

ConfigMaps

http://12factor.net/

 Google Cloud Platform

 Secrets

 Google Cloud Platform

Goal: grant a pod access to a secured something
• don’t put secrets in the container image!

12-factor says config comes from the
environment

• Kubernetes is the environment

Manage secrets via the Kubernetes API

Inject secrets as virtual volumes into your Pods
• late-binding, tmpfs - never touches disk
• also available as env vars

node

API

Pod Secret

Secrets

http://12factor.net/

 Google Cloud Platform

 HorizontalPodAutoscalers

 Google Cloud Platform

Goal: Automatically scale pods as needed
• based on CPU utilization (for now)
• custom metrics in Alpha

Efficiency now, capacity when you need it

Operates within user-defined min/max bounds

Set it and forget it

Status: GA in Kubernetes v1.2 ...

Stats

HorizontalPodAutoScalers

 Google Cloud Platform

 Multi-Zone Clusters

 Google Cloud Platform

Goal: zone-fault tolerance for applications

Zero API changes relative to kubernetes
● Create services, ReplicaSets, etc. exactly as

usual

Nodes and PersistentVolumes are labelled
with their availability zone
● Fully automatic for GKE, GCE, AWS
● Manual for on-premise and other cloud

providers (for now)

Status: GA in Kubernetes v1.2

Zone A

Zone C

Zone B

Federation
Master

Multi-Zone Clusters

User

 Google Cloud Platform

 Namespaces

 Google Cloud Platform

Problem: I have too much stuff!
• name collisions in the API
• poor isolation between users
• don’t want to expose things like Secrets

Solution: Slice up the cluster
• create new Namespaces as needed

• per-user, per-app, per-department, etc.
• part of the API - NOT private machines
• most API objects are namespaced

• part of the REST URL path
• Namespaces are just another API object
• One-step cleanup - delete the Namespace
• Obvious hook for policy enforcement (e.g. quota)

Namespaces

 Google Cloud Platform

 Resource Isolation

 Google Cloud Platform

Principles:
• Apps must not be able to affect each other’s

performance
• if so it is an isolation failure

• Repeated runs of the same app should see
~equal behavior

• QoS levels drives resource decisions in (soft)
real-time

• Correct in all cases, optimal in some
• reduce unreliable components

• SLOs are the lingua franca

Resource Isolation

 Google Cloud Platform

Pros:
• Sharing - users don’t worry about interference (aka the noisy neighbor problem)
• Predictable - allows us to offer strong SLAs to apps

Cons:
• Stranding - arbitrary slices mean some resources get lost
• Confusing - how do I know how much I need?

• analog: what size VM should I use?
• smart auto-scaling is needed!

• Expensive - you pay for certainty

In reality this is a multi-dimensional bin-packing problem: CPU, memory, disk
space, IO bandwidth, network bandwidth, ...

Strong isolation

 Google Cloud Platform

Request:
• how much of a resource you are asking to use, with a

strong guarantee of availability
• CPU (seconds/second)
• RAM (bytes)

• scheduler will not over-commit requests

Limit:
• max amount of a resource you can access

Repercussions:
• Usage > Request: resources might be available
• Usage > Limit: throttled or killed

Requests and Limits

 Google Cloud Platform

Defined in terms of Request and Limit

Guaranteed: highest protection
• request > 0 && limit == request

Burstable: medium protection
• request > 0 && limit > request

Best Effort: lowest protection
• request == 0

What does “protection” mean?
• OOM score
• CPU scheduling

Quality of Service

 Google Cloud Platform

 Quota and Limits

 Google Cloud Platform

Admission control: apply limits in aggregate

Per-namespace: ensure no
user/app/department abuses the cluster

Reminiscent of disk quota by design

Applies to each type of resource
• CPU and memory for now

Disallows pods without resources

ResourceQuota

 Google Cloud Platform

Admission control: limit the limits
• min and max
• ratio of limit/request

Default values for unspecified limits

Per-namespace

Together with ResourceQuota gives cluster
admins powerful tools

LimitRange

 Google Cloud Platform

 Cluster Auto-Scaling

 Google Cloud Platform

Add nodes when needed
• there are pending pods
• some pending pods would fit if we add a node

Remove nodes when not needed
• after removal, all pods must fit remaining nodes

Status: Works on GCE, GKE and AWS

...

Cluster Autoscaler

 Google Cloud Platform

 Scalability

 Google Cloud Platform

SLO met at <2000 nodes, <60000 pods
• 99% of API calls return in < 1 second
• 99% of pods start in < 5 seconds

Coming soon
• protobufs in API storage (already enabled on

the wire)
• 5000 nodes

Scalability & Performance

 Google Cloud Platform

Declarative > imperative: State your desired results, let the system actuate

Control loops: Observe, rectify, repeat

Simple > Complex: Try to do as little as possible

Modularity: Components, interfaces, & plugins

Legacy compatible: Requiring apps to change is a non-starter

Network-centric: IP addresses are cheap

No grouping: Labels are the only groups

Sets > Pets: Manage your workload in bulk

Open > Closed: Open Source, standards, REST, JSON, etc.

Design principles

Kubernetes (K8s) Community

~5k Commits
in 1.4 over 3

months

> 800 Unique
Contributors

Top 0.01% of
all Github
Projects

2500+ External
Projects Based

on K8s

Companies
Contributing

Companies
Using

 Google Cloud Platform

“Niantic chose GKE for its ability to orchestrate their container
cluster at planetary-scale, freeing its team to focus on deploying
live changes for their players.” - Niantic

 Google Cloud Platform

Further Reading
If this talk was interesting, deeper academic reading on cluster management:
“Borg, Omega, and Kubernetes”
ACM Queue, March 2, 2016, Volume 14, issue 1
http://queue.acm.org/detail.cfm?id=2898444

Or a hands-on “Hello World” quickstart to build a Docker image and run it on a
Kubernetes cluster:

http://kubernetes.io/docs/hellonode/

Another hard problem: how do you run N Kubernetes clusters as a service?
• create/delete, update, monitor, repair, escalate, upgrade, backup/restore, zonal

isolation, incremental rollouts, support ticket escalation, provisioning, and more!

http://queue.acm.org/issuedetail.cfm?issue=2898442
http://queue.acm.org/detail.cfm?id=2898444
http://queue.acm.org/detail.cfm?id=2898444
http://kubernetes.io/docs/hellonode/
http://kubernetes.io/docs/hellonode/

 Google Cloud Platform

Questions?

Potential discussion:
• What about Docker Swarm?
• … Mesos?
• What’s next for Kubernetes and

Container Engine?
• Why Google not FB/Uber/MS/Ama/etc?
• How do I get an internship / job?

• Let’s discuss!

More questions?
Happy to chat!
• Lunch
• 1:1’s after that
• mohr@google.com
• 590s@alexmohr.com

• Alex on Philosophy:
• Imperative vs. declarative
• Orchestration vs. choreography
• Product vs. tech
• User guide vs. design doc
• Engineering code vs. organizations
• Your team is a design parameter
• Launch and iterate; MVP

mailto:mohr@google.com
mailto:mohr@google.com
mailto:590s@alexmohr.com
mailto:590s@alexmohr.com

