Clocks, Event Ordering, and Global Predicate Computation
Events and Histories

- Processes execute sequences of **events**
- Events can be of 3 types: **local**, **send**, and **receive**
- \(e_p^i \) is the \(i \)-th event of process \(p \)
- The **local history** \(h_p \) of process \(p \) is the sequence of events executed by process \(p \)
Ordering events

Observation 1:
Events in a local history are **totally ordered**

Observation 2:
For every message \(m \), \(\text{send}(m) \) precedes \(\text{receive}(m) \)
Lamport Clock: Increment Rules

\[LC(e_{p}^{i+1}) = LC(e_{p}^{i}) + 1 \]

\[LC(e_{q}^{j}) = \max(LC(e_{q}^{j-1}), LC(e_{p}^{i}))) + 1 \]

Timestamp \(m \) with \(TS(m) = LC(send(m)) \)
Discussion

What are the strengths of Lamport clocks?

What are the limitations of Lamport clocks?

What model assumptions are too constraining in Lamport’s clock paper?
Example of Global Predicate

Setting: Locks in distributed system

Objects locked by nodes and moved to the node that is currently modifying it

Nodes requesting the object/lock, send a message to the current node locking it and blocks for a response

How do we detect deadlocks in this scenario?
Global States & Clocks

- Need to reason about global states of a distributed system
- Global state: processor state + communication channel state
- Consistent global state: causal dependencies are captured
- Use virtual clocks to reason about the timing relationships between events on different nodes
Space-Time diagrams

A graphic representation of a distributed execution

H and \(\rightarrow \) impose a partial order
A cut C is a subset of the global history of H

The frontier of C is the set of events

$$e_1^c, e_2^c, \ldots, e_n^c$$
A cut is consistent if
\[\forall e_i, e_j : e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C \]

A consistent global state is one corresponding to a consistent cut.
What p_0 sees

Not a consistent global state: the cut contains the event corresponding to the receipt of the last message by p_3 but not the corresponding send event
Global Consistent States

Can we use Lamport Clocks as part of a mechanism to get globally consistent states?
Global Snapshot

- Develop a simple global snapshot protocol
- Refine protocol as we relax assumptions
- Record:
 - processor states
 - channel states
- Assumptions:
 - FIFO channels
 - Each \(m \) timestamped with \(T(send(m)) \)
Snapshot I

i. p_0 selects t_{ss}

ii. p_0 sends “take a snapshot at t_{ss}” to all processes

iii. when clock of p_i reads t_{ss} then p

 a. records its local state σ_i
 b. sends an empty message along its outgoing channels
 c. starts recording messages received on each of incoming channels
 d. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}
Snapshot II

processor p_0 selects Ω

p_0 sends “take a snapshot at Ω” to all processes; it waits for all of them to reply and then sets its logical clock to Ω

when clock of p_i reads Ω then p_i

- records its local state σ_i
- sends an empty message along its outgoing channels
- starts recording messages received on each incoming channel
- stops recording a channel when receives first message with timestamp greater than or equal to Ω
Relaxing synchrony

Process does nothing for the protocol during this time!

p_i

take a snapshot at Ω

empty message:

$TS(m) \geq \Omega$

records
local state σ_i

sends empty message:

$TS(m) \geq \Omega$

monitors channels
processor \(p_0 \) sends itself “take a snapshot”

when \(p_i \) receives “take a snapshot” for the first time from \(p_j \):
- records its local state \(\sigma_i \)
- sends “take a snapshot” along its outgoing channels
- sets channel from \(p_j \) to empty
- starts recording messages received over each of its other incoming channels

when \(p_i \) receives “take a snapshot” beyond the first time from \(p_k \):
- stops recording channel from \(p_k \)

when \(p_i \) has received “take a snapshot” on all channels, it sends collected state to \(p_0 \) and stops.
Same problem, different approach

Monitor process does not query explicitly

Instead, it passively collects information and uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of events of the distributed computation based on the order in which the receiver is notified of the events.
Update rules

\[
VC(e_i)_i := VC[i] + 1
\]

Message \(m \) is timestamped with \(TS(m) = VC(send(m)) \)

\[
VC(e_i) := \max(VC, TS(m))
\]

\[
VC(e_i)_i := VC[i] + 1
\]
Example
Operational interpretation

$\text{VC}(e_i)[i] = \text{no. of events executed by } p_i \text{ up to and including } e_i$

$\text{VC}(e_i)[j] = \text{no. of events executed by } p_j \text{ that happen before } e_i \text{ of } p_i$
VC properties: event ordering

Given two vectors V and V', less than is defined as:

$$V < V' \equiv (V \neq V') \land (\forall k : 1 \leq k \leq n : V[k] \leq V'[k])$$

Strong Clock Condition:

$$e \rightarrow e' \equiv VC(e) < VC(e')$$

Simple Strong Clock Condition:

Given e_i of p_i and e_j of p_j, where $i \neq j$

$$e_i \rightarrow e_j \equiv VC(e_i)[i] \leq VC(e_j)[i]$$

Concurrency

Given e_i of p_i and e_j of p_j, where $i \neq j$

$$e_i \parallel e_j \equiv (VC(e_i)[i] > VC(e_j)[i]) \land (VC(e_j)[j] > VC(e_i)[j])$$
The protocol

p_0 maintains an array $D[1, \ldots, n]$ of counters

$D[i] = TS(m_i)[i]$ where m_i is the last message delivered from p_i

Rule: Deliver m from p_j as soon as both of the following conditions are satisfied:

$D[j] = TS(m)[j] - 1$

$D[k] \geq TS(m)[k], \forall k \neq j$
Summary

Lamport clocks and vector clocks provide us with good tools to reason about timing of events in a distributed system.

Global snapshot algorithm provides us with an efficient mechanism for obtaining consistent global states.