Cluster Computing
Big Data Parallelism

• Huge data set
 • crawled documents, web request logs, etc.

• Natural parallelism:
 • can work on different parts of data independently
 • image processing, grep, indexing, many more
What are the issues that we need to tackle in building big data analytics systems?
Challenges

- Parallelize application
 - Where to place input and output data?
 - Where to place computation?
 - How to avoid network bottleneck?
- How to write the application? Programmer decides or can the system figure it out?
- Balance computations
- Handle failures of nodes during computation
- Scheduling several applications who want to share infrastructure
Map Reduce

• Overview:
 • Partition large data set into M splits
 • Run map on each partition, which produces R local partitions; using a partition function R
 • Run reduce on each intermediate partition, which produces R output files
Details

- **Input values**: set of key-value pairs
 - Job will read chunks of key-value pairs
 - Are “key-value” pairs a good abstraction?

- **Map(key, value)**:
 - System will execute this function on each key-value pair
 - Generate a set of intermediate key-value pairs

- **Reduce(key, values)**:
 - Intermediate key-value pairs are sorted
 - Reduce function is executed on these intermediate key-values
Example: Simple Math

Given a set of integers, compute the sum of their square values.

e.g., 1 2 3 4 → 1 + 4 + 9 + 16 → 30

Map(key, value) {
 Generate (1, value*value)
}

Reduce(key, values) {
 Int sum = 0;
 For (all values)
 sum += values[i];
}
Count words in web-pages

Map(key, value) {
 // key is url
 // value is the content of the url
 For each word W in the content
 Generate(W, 1);
}

Reduce(key, values) {
 // key is word (W)
 // values are basically all 1s
 Sum = Sum all 1s in values

 // generate word-count pairs
 Generate (key, sum);
}
Reverse web-link graph

Go to google advanced search:
"find pages that link to the page:" cnn.com

Map(key, value) {
 // key = url
 // value = content
 For each url, linking to target
 Generate(output target, url);
}

Reduce(key, values) {
 // key = target url
 // values = all urls that point to the target url
 Generate(key, list of values);
}
Implementation

• Depends on the underlying hardware: shared memory, message passing, NUMA shared memory, etc.

• Inside Google:
 • commodity workstations
 • commodity networking hardware (1Gbps at node level and much smaller bisection bandwidth)
 • cluster = 100s or 1000s of machines
 • storage is through GFS
Implementation

- Partition input data into M splits
 - starts up many copies of the program on a cluster
 - one master and multiple slaves
 - Map function invoked on key-values
 - Output is buffered in memory and periodically logged to disk (local disk)

- Reduce invocations: partition the intermediate key space into R pieces (e.g., $\text{hash(key)} \% R$)
- R and partition function is specified by user
Implementation

- Master keeps track of locations of intermediate keys
- Reducer accesses these values through RPCs
 - reducer sorts all keys assigned to it
 - iterates over each unique key and performs reduce over associated values
 - emits output values that are appended to a final output file for this reduce partition (in GFS)
Role of the Master

- Keeps state regarding the state of each worker machine (pings each machine)
- Reschedules work corresponding to failed machines
- Orchestrates the passing of locations to reduce functions
Issues

- How should M and R compare to no. of workers?
- What optimizations are possible/required?
Discussion

- what are the performance limitations of map reduce?
- what are the constraints imposed on map and reduce functions?
- how would you like to expand the capability of map reduce?
Piccolo

• **MapReduce restrictions:**
 - just two phases
 - map can see only its split
 - reduce sees just one key at a time

• **Piccolo programming model:**
 - any number of phases (determined by controller)
 - computation proceeds in rounds:
 - example: page rank
 - global key/value tables store intermediate data
def pr_kernel(graph, curr, next):
 i = my_instance
 n = len(graph)/NUM_MACHINES
 for s in graph[(i-1)*n:i*n]
 for t in s.out:
 next[t] += curr[s.id] / len(s.out)

def main():
 for i in range(50):
 launch_jobs(NUM_MACHINES, pr_kernel, graph, curr, next)
 swap(curr, next)
 next.clear()
Naive PR is Slow
curr = Table(..., partitions=100, partition_by=site)
next = Table(..., partitions=100, partition_by=site)
group_tables(curr, next, graph)

def pr_kernel(graph, curr, next):
 for s in graph.get_iterator(my_instance):
 for t in s.out:
 next[t] += curr[s.id] / len(s.out)

def main():
 for i in range(50):
 launch_jobs(curr.num_partitions, pr_kernel, graph, curr, next, locality=curr)
 swap(curr, next)
next.clear()
PageRank: Synchronization

curr = Table(..., partition_by=site, accumulate=sum)
next = Table(..., partition_by=site, accumulate=sum)
group_tables(curr, next, graph)

def pr_kernel(graph, curr, next):
 for s in graph.get_iterator(my_instance):
 for t in s.out:
 next.update(t, curr.get(s.id)/len(s.out))

def main():
 for i in range(50):
 handle = launch_jobs(curr.num_partitions,
 pr_kernel,
 graph, curr, next, locality=curr)
 barrier(handle)
 swap(curr, next)
next.clear()
Efficient Synchronization

Graph A -> B, C

Ranks A: 0

Graph B -> D

Ranks B: 0

Graph C -> E, F

Ranks C: 0

Runtime

Workers buffer updates locally
→ Release consistency

update (a, 0.2)

update (a, 0.3)

Runtime computes sum
Workers buffer updates locally
→ Release consistency

update (a, 0.3)
PageRank: Checkpointing

curr = Table(..., partition_by=site, accumulate=sum)
next = Table(..., partition_by=site, accumulate=sum)
group_tables(curr, next)
def pr_kernel(graph, curr, next):
 for node in graph.get_iterator(my_instance):
 for t in s.out:
 next.update(t, curr.get(s.id)/len(s.out))

def main():
 curr, userdata = restore()
 last = userdata.get('iter', 0)
 for i in range(last, 50):
 handle = launch_jobs(curr.num_partitions, pr_kernel,
 graph, curr, next, locality=curr)
 cp_barrier(handle, tables=(next), userdata={'iter':i})
 swap(curr, next)
 next.clear()

Restore previous computation
User decides which tables to checkpoint and when
• How does Piccolo compare to MapReduce:
 • in terms of programmability
 • in terms of performance (stragglers, load balance, etc.)
 • in terms of fault tolerance