
 1

Architectural Support for Software Transactional Memory

Bratin Saha, Ali-Reza Adl-Tabatabai, Quinn Jacobson
Microprocessor Technology Lab, Intel Corporation

bratin.saha, ali-reza.adl-tabatabai, quinn.a.jacobson@intel.com

Abstract
Transactional memory provides a concurrency control
mechanism that avoids many of the pitfalls of lock-based
synchronization. Researchers have proposed several
different implementations of transactional memory,
broadly classified into software transactional memory
(STM) and hardware transactional memory (HTM). Both
approaches have their pros and cons: STMs provide rich
and flexible transactional semantics on stock processors
but incur significant overheads. HTMs, on the other hand,
provide high performance but implement restricted
semantics or add significant hardware complexity.

This paper is the first to propose architectural support for
accelerating transactions executed entirely in software. We
propose instruction set architecture (ISA) extensions and
novel hardware mechanisms that improve STM
performance. We adapt a high-performance STM
algorithm supporting rich transactional semantics to our
ISA extensions (called hardware accelerated software
transactional memory or HASTM). HASTM accelerates
fully virtualized nested transactions, supports language
integration, and provides both object-based and cache-line
based conflict detection. We have implemented HASTM in
an accurate multi-core IA32 simulator. Our simulation
results show that (1) HASTM single-thread performance is
comparable to a conventional HTM implementation; (2)
HASTM scaling is comparable to a STM implementation;
and (3) HASTM is resilient to spurious aborts and can
scale better than HTM in a multi-core setting. Thus,
HASTM provides the flexibility and rich semantics of STM,
while giving the performance of HTM.

1. Introduction

As single thread performance hits the power wall,
hardware architects have turned to chip-level
multiprocessing (CMP) to increase processor performance.
Applications must now be concurrent to exploit this
increased computational power. Today, programmers use
lock-based synchronization for concurrency control.
Composing lock-based software modules can lead to well-
known problems such as deadlock and poor scalability.
Transactional memory (TM) [14] provides an alternate
concurrency control mechanism that avoids the pitfalls of
lock-based synchronization while providing scalability.

TM implementations broadly classify into software
transactional memory (STM) and hardware transactional
memory (HTM). STM implements transactional memory
entirely in software on stock hardware
[1][7][10][11][13][26]. STM can support rich transaction
semantics and can integrate with a language runtime.
While STM performance scales well with the number of
processors, it suffers from overheads such as memory
barriers (i.e., instrumentation code) for memory accesses
inside transactional code blocks.

HTM defines new ISA that provides transactional
semantics for memory accesses [3][9][14][18]. HTM
implementations offer superior performance, but their
restricted semantics don’t directly support transactional
language constructs, which define rich transaction
semantics such as nesting with partial roll-back, blocking
primitives that compose, and object or element granularity
conflict detection. Recent proposals augment HTM
semantics [22][31], but add significant hardware
complexity and even then, do not fully match the
requirements of transactional language constructs.

Hybrid transactional memory (HyTM) [17][23][29]
blends the performance of HTM with the flexibility of
STM by executing a transaction first using HTM and then
using STM if HTM fails. HyTM, however, constrains a
fast transaction to the restricted semantics of the
underlying HTM, and provides no hardware support for
transactions whose semantics (or size) do not match HTM.

This paper proposes an alternative model for high-
performance TM systems: hardware accelerated software
transactional memory (HASTM). In HASTM, transactions
always execute in software but use architectural support to
improve performance. The architectural support
accelerates all transactions, including large transactions
that exceed the cache size, long running transactions that
span OS scheduling quanta, nested transactions,
transactions interrupted by a garbage collection, and
others. The resulting TM system integrates into a language
runtime, executes semantically rich transactions more
efficiently than a pure STM, and executes simple
transactions almost as efficiently as HTM.

In contrast to previous approaches, our architectural
support does not implement any TM semantics in
hardware. Instead, it provides mechanisms that accelerate
an STM and may have uses beyond TM. The ISA

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 2

extensions have a default behavior that can be
implemented trivially in processors that do not want to
implement the hardware support. STM implementations
run correctly on such processors, albeit without
performance improvement.

2. TM implementation requirements

Recent language proposals define a block-structured
atomic construct that provide rich transaction semantics
in lieu of locks [2][4][5][6]. Beyond the basic requirements
of unbounded size and duration, they impose the following
constraints on an implementation:

Language environment integration. A TM
implementation must integrate with modern language
features such as garbage collection (GC) and exception
handling. The TM implementation must allow a garbage
collector (most likely running as a different thread) to
suspend a transaction, and to inspect and modify its state –
including speculative state [1][12] – without aborting.
Buffered state (e.g., logged data) must contain metadata to
allow precise GC [1][12][25]. The TM implementation
should also integrate with tools such as debuggers and
performance analyzers, which also require suspension of a
transaction, access to its state, and access to metadata
describing state buffered by the TM system. In essence, a
TM system must allow inspection, modification, and
reflection of its speculative state by a thread not running in
the same transaction context. HTM proposals have largely
not addressed these requirements. HyTM can address these
by reverting to a software transaction, which sacrifices
performance. HASTM integrates into the language
environment – for example, the runtime can suspend a
hardware-accelerated transaction for precise GC,
performance diagnostics, and so on.

Language-level conflict detection granularity. The
TM system should detect conflicts at a granularity that
matches language entities such as objects or array
elements. This enables compiler optimizations and allows
programmers to reason about data conflicts in their
algorithm. HTMs (and HyTM, which leverages HTM)
detect conflicts at the cache line granularity, which can
cause false conflicts and hinders compiler optimizations.
HASTM supports both object- and cache-line granularity
conflict detection and leverages compiler optimizations.

Advanced transaction semantics. The TM system
should support closed nesting with partial rollback,
blocking, and user-initiated aborts. Nested transactions and
blocking primitives that compose [11][1] allow
programmers to compose software components in a safe,
scalable, and extensible way. Some recent HTM proposals
support nesting [16][22] at significant hardware
complexity cost, while others (including HyTM) flatten
nested transactions. HASTM accelerates nested
transactions with partial rollback.

Flexible contention management. Prior research [27]
showed that no one contention policy best matches all
applications. Moreover, accurate contention diagnostics
greatly enhance transactional programming. HTM systems
have largely ignored this requirement. We believe HTM
will have difficulty in providing diagnostics because it
leverages cache coherence, which uses physical addresses.
STM (and HASTM) can provide better diagnostics since it
logs all transactional activity in the application space.

Consistent performance across a variety of
transactions. Transactions whose footprint exceed the
cache size of a modern processor can consume more than
20% of the transactional execution time [30]. A TM
system should also accelerate such transactions to prevent
them from limiting performance. In the absence of many
real-world applications, a TM implementation should not
bake into hardware assumptions about the common case
behavior of transactions. We show in Section 7 that
HASTM accelerates transactions across the board.

3. Architectural support for STM

To accelerate STM, we propose a novel architecture
extension that provides a generic filtering mechanism for
software. This mechanism allows software to mark fine-
grain blocks of memory using mark bits. Mark bits are new
meta-data that is private per thread and non-persistent.
There are two key capabilities enabled with the
mechanism. First, software can query if the mark bit has
been previously set for a single given block of memory
and that there has been no writes to the memory by other
threads since the block was marked. Second, software can
query if there has potentially been any writes by other
threads to any of the set of memory blocks the software
has marked.

Software sets and queries the mark bits with new
instructions discussed below. Hardware may discard a
mark bit as long as it records that it has done so. Hardware
records that a mark bit has been discarded by incrementing
a saturating mark counter that is part of the architected
state of a thread. Software may query whether any of the
bits have been discarded by reading the mark counter.
Mark bits are discarded when a coherency event occurs
such that another thread may modify the memory block the
mark bit is associated with. Mark bits can also be
discarded because of hardware capacity limits. In our
implementation we also discard all mark bits on priority
transitions (ring transitions in IA32 terminology). The
mark counter does not have to be saved on context
switches as it can be restored to a default value of all ones
by either hardware or software.

3.1 Hardware Implementation

The mark bits can be implemented by adding a small
additional amount of state to the coherency state of cache

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 3

lines. The mark bits can reside in any level of the cache; in
this paper we assume they reside only in the first-level data
cache. For caches shared by multiple hardware threads,
such as in the case of simultaneous multithreading, each
thread has its own set of mark bits in the cache, and stores
by one thread invalidate other threads’ mark bits.

For our implementation we augment the data cache’s
tag with one mark bit per 16-Byte subblock of a cache line;
we model a 64-byte cache line, so that is 4 mark bits per
cache line. Figure 1 shows the state diagram for a single
cache line simplified to one mark bit per cache line. When
the processor brings a line into the cache, it clears all the
mark bits for the new line. The mark bits do not persist
outside of the cache – once a line leaves the cache or is
invalidated, the values of its mark bits disappear. We refer
to a cache line with any mark bit set as a marked cache
line. The processor increments the mark counter whenever
a marked cache line gets evicted or snooped; that is, when
a marked cache line transitions to the invalid state.

Figure 1: Cache line transitions

We extend the ISA with six new instructions to
modify and query the mark bits and with one new register
to hold the mark counter. The new instructions provide a
general capability that applies to any ISA; as such we
provide an abstract definition of the instructions.

loadSetMark(addr): loads the value at memory
location addr and sets the mark bit associated with addr.
If the address spans across multiple blocks (or multiple
cache lines), then all the mark bits are set.

loadResetMark(addr): loads the value at memory
location addr and clears the mark bit associated with addr.
If the address spans across multiple blocks (or cache lines),
then all the mark bits are cleared.

loadTestMark(addr): loads the value at memory
location addr and sets the carry flag to the value of the
mark bit. If the address spans across multiple blocks (or
cache lines), then the logical AND of all the mark bits are
put into the carry flag.

resetMarkAll(): clears all mark bits in the cache and
increments the mark counter.

resetMarkCounter(): resets mark counter.
readMarkCounter(): reads mark counter value.

For our study we added the new instructions to the
IA32 instruction set using unused 3 Byte opcodes and
supporting only the simplest Base + Displacement
addressing mode. Variations of the load instructions exist
for accessing different data types (e.g., single and double
precision floating-point; 8-, 16-, 32-, and 64-bit integer).
We only implemented a single filter, but one could support
multiple filters concurrently with independent mark bits to
enable additional software uses. Our minimum granularity
is 16 bytes but we have variants of the instructions that
support larger granularities up through the cache line size
(64 byte) and operate on multiple mark bits
simultaneously.

3.2 Usage Overview

The mark bits allow software to track cache residency
of data and thus whether other processors could have
potentially written to a datum between two accesses. By
loading a value using loadTestMark, software can
simultaneously load a value from memory and test the
mark bit of the memory address. If the mark bit is set,
software knows not only that it has accessed the address
before by using a loadSetMark instruction, but also that the
cache line has not been invalidated since that last access,
implying that no other thread has written to that cache line
in the interim. In Section 5, we show how to use this
filtering capability to avoid STM read barriers for memory
locations that the STM has already logged.

The mark counter allows software to monitor whether
any of the data it has accessed could have been written by
another processor. If the mark counter value is zero,
software knows that none of the lines it has accessed using
loadSetMark has been invalidated, implying that no other
processor has written to any of those lines since the last
time software reset the mark counter. In Section 5, we
show how to use this monitoring mechanism to avoid STM
conflict checking (i.e., validation) overheads.

3.3 Default Implementation

To allow maximum flexibility in future designs,
hardware features should create as little legacy as possible
for future processor generations. Our proposed ISA
adheres to this: it allows a default implementation that
does not support marking or monitoring of marked lines.
An installed code base using the new ISA will execute
correctly but without performance improvement running
with this default behavior. The following gives the default
behavior:

loadSetMark(addr): loads the value at memory
location addr and increments the mark counter.

loadResetMark(addr): loads the value at memory
location addr.

loadTestMark(addr): loads the value at memory
location addr and clears the carry flag.

Line: valid
Mark bit: 0

Line: invalid
Mark bit: 0

Line: valid
Mark bit: 1

load/store/prefetch/
loadResetMark

invalidate/eviction

 invalidate/eviction
increment mark counter

LoadSetMark

 loadSetMark

LoadResetMark

LoadSetMark

 loadResetMark

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 4

resetMarkAll(): increments the mark counter.
resetMarkCounter(): resets mark counter.
readMarkCounter(): reads mark counter.
It is easy to see that the default behavior is

functionally correct. Suppose a program P executes on a
processor with the full implementation of the new ISA.
Consider the scenario where every time a mark bit is set,
the cache line immediately gets evicted. This represents
one legal execution (say E) of P. With the default ISA
implementation, P always has the execution sequence E.

The default implementation also allows the mark bits
to be easily virtualized. For example, a processor could
fully implement mark bits at cache line granularity (64
bytes) and provide default implementations for the mark
bits at sub-cache line granularity. A processor could
support multiple sets of independent mark bits (filters).
The processor could either fully support all the bits, or
fully implement only some set of filters and use the default
implementation for the rest.

4. Base STM algorithm

Our base STM algorithm is based on the recent STM
algorithms presented in [1][12][26]. The STM provides a
runtime API supporting language constructs for declaring
atomic blocks. In this section, we describe only the details
relevant to this paper and reference prior publications for
elided details.

The base STM algorithm implements strict two-phase
locking for writes and optimistic concurrency control using
versioning for reads. It updates memory locations in place,
logging the location’s original value in an undo log in case
of an abort. Thus, like UTM[3] and LogTM[24], the STM
implements eager version management. Similarly, the
STM detects conflicts eagerly on accesses to locations
written by other transactions, reducing wasted work. The
STM associates a pointer-sized transaction record with
each datum accessed inside a transaction. The transaction
record can be in either the shared state, allowing read-only
access to the datum by any number of transactions, or the
exclusive state, allowing read-write access by a single
transaction that owns the record. In the shared state, the
transaction record contains an odd-valued version number.
In the exclusive state, it contains a pointer to the owning
transaction’s word-aligned transaction descriptor.

The mapping between a datum D and transaction
records is flexible, allowing conflict detection granularity
and policy decisions that depend on the language
environment. In managed environments (e.g., Java), every
object contains a transaction record in its header,
facilitating object granularity conflict detection [1][12].
The transaction record address is simply an offset from the
base of the object containing the datum D.

In unmanaged environments (e.g., C/C++), the STM
hashes a variable’s address into a global table of
transaction records, facilitating cache line or word

granularity conflict detection [26]. Given a datum D whose
address is in a register addr, the following code sequence
loads the transaction record address into the register rec:

mov rec, addr
and rec, 0x3ffc0
add rec, TxRecTableBase

This code extracts bits 6-17 of the address as an index
into a global transaction record table whose address is
given by the constant TxRecTableBase. The transaction
records are 64-byte cache line aligned to prevent ping-
ponging, so the extracted bits also offset into the table.

For each transaction, the STM maintains a read set,
write set, and undo log in the transaction’s descriptor [1].
The read (write) set contains the transaction records of the
data read (written) by the transaction, and the version
numbers held by the transaction records at the time the
transaction read (wrote) the data. The undo log contains
the old values of the data written in the transaction. On
abort, a transaction reverts modified memory locations
using the undo log. On commit or abort, a transaction sets
all the transaction records that it owns (i.e., the ones in its
write log) back to the shared state but with an incremented
version number. On commit and periodically during the
transaction, a transaction validates (Figure 2) the read set
by checking that the version numbers on all the transaction
records in its read set have not changed. This ensures that
no other transaction has updated any of its read data.

Figure 2: Read set validation

Before accessing a shared datum D, a transaction must
call the STM read (write) barrier function stmRdBar
(stmWrBar) with the transaction record for D. Figure 3
shows pseudo-code for these functions. If the transaction
already owns the record, then these functions simply
return. If some other transaction owns the record, then a
contention management function (handleContention) either
aborts or waits until the record becomes available and
returns the record’s value (a version number). The write
barrier attempts to acquire ownership of the record by
setting it to the current transaction’s descriptor via a
compare-and-swap operation (CAS). The logRead and
logWrite functions log the transaction record pointer and
its version number in the read and write sets, respectively.

validate() {
for <txnrec,ver> in transaction’s read set
 if (*txnrec != ver)
 abort();

}

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 5

Figure 3: Read and write barrier algorithms
Before writing to a shared variable, a transaction must

log the old value of the variable in the undo log. In a
managed environment, the undo log entries need additional
metadata to enable garbage collection during a
transaction[1][12]. Prior hardware approaches to providing
unbounded transactions[18][24] make the structure of logs
architectural. Unfortunately, this does not work in a
garbage collected system where the structure of the log
depends on the language implementation.

Figure 4 shows the inlined read barrier fast path.
There are two slow paths (not shown), one at label
contention and another at label overflow. The read barrier
and read set validation overheads dominate STM
overheads [26] and are thus the prime targets for
optimization and hardware acceleration. Compiler and
runtime optimizations [1][12] eliminate some of the
overheads but have been used only in managed
environments. Compilation scope and aliasing limit
compiler optimizations; as a result, STM systems still
show significant overhead [1][12]. Our hardware-
accelerated STM starts with a STM that uses compiler
optimizations and improves its performance further.

Figure 4: Inlined read barrier fast path

5. Hardware accelerated STM

HASTM uses the ISA from Section 3 to eliminate
redundant logging and to eliminate validation overhead
altogether for transactions whose transaction records fit in
the cache. We assume a minimum non-empty object size
of 16 Bytes for object-based conflict detection1. This is
already the case for most 64-bit managed runtimes

Figure 5 shows the HASTM object-based read barrier.
When a transaction executes a read barrier on a transaction
record T for the first time, the loadSetMark (line 3) sets the
mark bit, and the normal read barrier sequence checks T
and appends it to the read set. On subsequent executions of
a read barrier on T the conditional branch (line 2) succeeds
and the read barrier completes if the line holding T has not
been invalidated in the interim. Thus, the fast path
reduces from 12 instructions in the STM to 2
instructions. The HASTM write barrier also sets the mark
bit on the transaction record so that subsequent read
barriers take the fast path.

Figure 5: HASTM object-based read barrier
Validation (Figure 6) first checks the mark counter to

detect whether marked lines were invalidated. If none of
the marked lines were invalidated, then it avoids validation
overhead; otherwise, it checks the version numbers in the
read set. Note that invalidation of a marked cache line does
not by itself abort a transaction; it simply forces a full
software validation of the read set.

Figure 6: HASTM validation

In an unmanaged environment using cache-line
conflict detection, we can optimize STM overheads further
by using the mark bits to track cache lines holding the data
accessed by a transaction (rather than the transaction

1 We only require that the minimum size be 16 bytes, objects

don’t need to be aligned at 16 bytes.

validate() {
 markCount = readMarkCounter();
 resetMarkAll();

if (markCount == 0) /*no snoop or eviction*/
 return;
/* perform full read set validation */
for <txnrec,ver> in transaction’s read set
 if (*txnrec != ver)
 abort();

}

loadTestMark eax, [rec] /* check 1st access */
jnae done
loadSetMark eax, [rec]
test eax, #versionmask /*is a version no.*/
jz contentionOrRecursion
mov ecx, [txndesc + rdsetlog] /*get log ptr*/
test ecx, #overflowmask
jz overflow
add ecx, 8 /* inc log ptr */
mov [txndesc + rdsetlog], ecx
mov [ecx – 8], rec /* logging */
mov [ecx – 4], eax /* logging */
done:

stmRdBar(TxnRec* rec) {
void* recval = *rec;
void* txndesc = getTxnDesc();
if (recval == txndesc) return;

 if (isVersion(recVal) == false)
 recval = handleContention(rec);
 logRead(rec,recval);
}
stmWrBar(TxnRec* rec) {
 void* recval = *rec;

void* txndesc = getTxnDesc();
if (recval == txndesc) return;

 if (isVersion(recVal) == false)
 recval = handleContention(rec);

while (CAS(rec,recval,txndesc) == false)
 recval = handleContention(rec);
logWrite(rec,recval);

}

mov eax, [rec] /* load TxRec */
cmp eax, txndesc /* do I own exclusive */
jeq done
test eax, #versionmask /* is a version no. */
jz contention
/* logRead fast path: */
mov ecx, [txndesc + rdsetlog] /*get log ptr*/
test ecx, #overflowmask
jz overflow
add ecx, 8 /*inc log ptr*/
mov [txndesc + rdsetlog], ecx
mov [ecx – 8], rec /* logging */
mov [ecx – 4], eax /* logging */
done:

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 6

records logged by the transaction). Figure 7 shows this
optimized read barrier code sequence. This code sequence
first loads the accessed data using
loadTestMark_granularity64. If the cache line has been
accessed before in the transaction, then the conditional
(line 2) succeeds and we are done with both the read
barrier and the load. Thus the fast path reduces from 16 to
2 instructions.

Figure 7: HASTM cache line based read barrier

It is also possible to mark both the data and the
transaction record, so that if the marked line holding data
leaves the cache then the read barrier slow path checks
whether the transaction record is marked before executing
the rest of the slow path.

We have concentrated on filtering read barriers
because that gives the most performance benefit, but an
implementation could also filter STM write barrier and
undo logging operations using additional mark bits.

The mark bit filtering mechanism may not eliminate
all redundant logging operations when the set of marked
cache lines exceeds the capacity constraints of the cache
(e.g., when marked cache lines are evicted due to set
conflicts). In this case, the benefit from HASTM is
proportional to the temporal locality inside a transaction.

HASTM allows transactions to span seamlessly across
context switches, page faults, and other interruptions.
Before resuming, an interrupt executes resetMarkAll,
which increments the mark counter (or the processor can
execute resetMarkAll on an OS transition). This does not
abort the transaction – it merely causes a full software
validation on commit. On resumption, the transaction
benefits from marking and temporal locality and hence
gets accelerated, though the resumed transaction does not
leverage the marking it performed before interruption.

Similarly, HASTM allows a transaction to be
suspended and its speculative state inspected and updated
without aborting the transaction. A garbage collector (GC)
or a tool can suspend a transaction, inspect and modify its
logs (e.g., move an object referenced by a log entry), and
even modify objects accessed by the transaction (e.g.,

update a reference to a moved object) without aborting the
transaction. As long as the GC or tool does not change any
of the transaction records (which the GC does not [1]), the
suspended transaction will resume without aborting, but
may lose some of its mark bits and perform a full software
validation.

Finally, HASTM does not require any additional
mechanism over the basic STM for handling nested
transactions, including for handling retry-orelse [1][11]
(condition synchronization). We refer the reader to [1] for
the STM handling of nested transactions.

6. Aggressive-mode HASTM

In this section we show that the hardware support
proposed in Section 3 can reduce read barrier overheads
further. Read set validation does not use the read log when
the marked lines fit in the cache. Thus transactions whose
marked lines fit in the cache don’t need read logging.

To take advantage of this, the STM uses two modes of
operation, aggressive and cautious (the mode described in
Section 5). The transaction descriptor tracks this mode.
When in aggressive mode, the read barrier slow path
checks that the transaction record is in shared state and sets
the mark bit (as before); however, it avoids appending the
transaction record to the read set, assuming optimistically
that its marked cache lines will remain valid until commit.
On commit, the transaction validates the assumption by
checking that the mark counter is zero. If its assumption
was correct, then it commits. Otherwise it aborts, flips into
cautious mode, and re-executes the transaction.

For single-threaded applications, our current
implementation always changes to aggressive mode after a
transaction commits. For multi-threaded applications, it
maintains a running ratio of aborted transactions and
changes to aggressive mode only when the ratio falls
below a low watermark.

Figure 8: Aggressive mode HASTM read barrier

Figure 8 shows the inlined read barrier for object-
based conflict detection leveraging aggressive mode. The
slow path first checks that the transaction record contains a
version number. It then checks the mode, and if running in
aggressive mode, skips the read set logging. This makes

loadTestMark eax, [rec] /* check 1st access */
jnae done
loadSetMark eax, [rec]
test eax, #versionmask /*is a version no.*/
jz contentionOrRecursion
test [txndesc + mode], #aggressive
jnz done /*was aggressive mode*/
mov ecx, [txndesc + rdsetlog] /*get log ptr*/
test ecx, #overflowmask
jz overflow
add ecx, 8 /* inc log ptr */
mov [txndesc + rdsetlog], ecx
mov [ecx – 8], rec /* logging */
mov [ecx – 4], eax /* logging */
done:

loadTestMark_granularity64 eax, [addr]
jnae complete
mov eax, addr
and eax, #0x3ffc0
add eax, #TxRecTableBase /* TxRec table base*/
mov ecx, [eax] /* load TxRec */
test ecx, #versionmask /* check is version*/
jz contentionOrRecursion
mov eax, [txndesc + rdsetlog] /*get log ptr */
test eax, #overflowmask
jz overflow
add eax, 8 /* inc log ptr */
mov [txndesc + rdsetlog], eax
mov [eax-8], addr /*logging*/
mov [eax-4], ecx /*logging*/
loadSetMark_graularity64 eax, [addr]

 /*set mark bit */
complete:

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 7

aggressive mode reads very efficient: the hot path is 2
instructions and the slow path is 7 instructions.

Figure 9: Aggressive mode cache-line HASTM

Figure 9 shows the read barrier for cache line based
conflict detection. Again, the only modification is a check
for aggressive mode after checking that the transaction
record is a version number. In a managed environment, the
compiler can avoid the dynamic test by generating
different code versions for the aggressive and the normal
modes.

Unlike STM compiler optimizations, aggressive-mode
HASTM can optimize read barriers across atomic blocks.
Consider the code sequence in Figure 10. The first atomic
block brings obj into the cache and sets the mark bit. The
read barrier in the second atomic block will take the fast
path if the cache line remains valid. In essence, aggressive-
mode HASTM allows redundancy elimination across
atomic sections.

Figure 10: Inter atomic optimizations

7. Performance evaluation

We will first show the basic STM performance and
then present the HASTM performance to reinforce 2
points: (1) STMs provide good scalability but suffer from
single thread overhead; and (2) HASTM accelerates the

main STM overheads while preserving STM scalability.
We will also present an analysis of non-synthetic
workloads to reinforce the HASTM design philosophy. In
all HASTM simulations, we cleared the mark bits at the
end of every transaction thus eliminating inter-atomic
optimizations. Thus the measurements presented here
represent HASTM performance conservatively – in
practice HASTM would perform better. The STM uses the
compiler optimizations described in [1][12], therefore the
HASTM improvements are achieved on an already highly
optimized software TM stack.

We used a number of micro-benchmarks and
concurrent data structures for HASTM performance
evaluation. We simulated HASTM on an accurate IA32
quad-core simulator. We modeled the new instructions
precisely; for example, the loadSetMark consumes a store
queue entry in addition to using the load port, and our
results accurately reflect the performance of the branch
prediction on the HASTM code’s additional branches.

7.1 Basic STM performance

Figure 11 reproduces the performance of the basic
STM on a hashtable, a binary search tree (BST), and a
Btree [1][26] on an IBM x445 XeonTM 16 way system. The
STM version of the benchmarks (solid lines) use coarse-
grained atomic sections (i.e., the atomic sections
encapsulate the code that coarse-grained locking would
synchronize on) and use cache line granularity conflict
detection. For each experiment, 20% of the operations
were updates. All the data structures were populated before
the experimental run. We use the same setup for the
simulation results shown later.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20Num%er of processors

-
.e

cu
tio

n
tim

e
re

la
ti4

e
to

 s
in

gl
e

th
re

a7
 lo

c8

tim
e

Hash,loc0
Hash,stm
BST,loc0
BST,stm
Btree,loc0
Btree,stm

Figure 11: STM (solid lines) vrs lock (dashed line)

on TM workloads
As is obvious, STM scales well but has a single thread

overhead. This has also been true of other published STM
results – at high processor counts, STM performs
comparably to well-tuned lock code, but has a significant
overhead at low processor counts. Figure 12 shows that the

…
expr;
atomic {
 Temp = obj.x;
 …
}
expr;
…
atomic {
 Temp1 = obj.y; /* leverage cache marking
 in previous atomic */
 …
}

loadTestMark_granularity64 eax, [addr]
jnae complete
mov eax, addr
and eax, #0x3ffc0
add eax, #TxRecTableBase /* TxRec table base */
loadSetMark_granularity64 ecx, [eax]
 /* load TxRec */
test ecx, #versionmask /* check is version */
jz contentionOrRecursion
test [txndesc + mode], #aggressive
jnz done /* was in aggressive mode */
mov eax, [txndesc + rdsetlog] /*get log ptr*/
test eax, #overflowmask
jz overflow
add eax, 8 /*inc log ptr*/
mov [txndesc + rdsetlog], eax
mov [eax-8], addr /*logging*/
mov [eax-4], ecx /*logging*/
done:
loadSetMark_granularity64 eax, [addr]
 /* set filter bit */
complete:

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 8

majority of the STM overhead arises from the read barrier
and validation. Other work has borne this out as well [29].

08

108

208

308

408

508

608

708

;08

<08

1008

BST Hashtable Btree

Application

TLS access

stmWriteBarrier

stmCommit

stmValidate

stmReadBarrier

Figure 12: STM execution time breakdown

7.2 Workload analysis

We analyzed a large number of Java and pthreads
workloads2 to examine whether our hardware accelerated
STM would help. Since HASTM relies on cache reuse
inside atomic sections, we measured the locality of
memory accesses to demonstrate the opportunity for
HASTM in these workloads.

0
10
20
30
40
50
60
70
;0
<0

100

mold
yn

mon
tec

arl
o

ra
ytr

ac
er

cry
pt

luf
ac

t

se
rie

s so
r

sp
ars

em
atr

iL
pm

d

ap
ac

he

0in
ga

te

bp
-vi

sio
n

9e
rc

en
t 4

al
ue

s

8 loads Cache reuse:loads Cache reuse:stores

Figure 13: Ratio of loads and cache reuse
Figure 13 shows the breakdown of memory operations

(loads vs. stores) inside critical sections, and the degree of
cache reuse for the loads; that is, the fraction of loads
inside critical sections that access a cache line that has
already been accessed by a prior load inside the same
critical section. In almost all cases, loads account for
greater than 70% of the memory operations, and we see a
reuse greater than 50%. Again, to be conservative we look
at intra-atomic reuse; in practice, the reuse is higher due to
inter-atomic reuse. The workload results reinforce the

2 We would like to acknowledge and thank Chi Cao Minh of

Stanford’s TCC group for helping with this analysis.

results from the transactional workloads: read barrier and
read set validation would be the primary STM overhead.

7.3 HASTM single thread results

Apart from the basic STM, there are 2 other categories
of TM implementations that we can compare with: (1) pure
hardware solutions such as UTM [3], TCC[9], and
LogTM[24]; and (2) HyTM solutions such as [17][23][29].
The pure hardware solutions do not provide all of the
semantic properties required for language-level
transactions and entail hardware complexity that may be
beyond high-volume commercial processors, so we will
compare only against HyTM approaches. HyTM first tries
to execute a transaction using HTM, failing which it
executes the transaction using STM. When executing using
HTM, the hardware detects conflicts and buffers
speculative updates. Figure 14 shows the transactional read
and write barriers under HyTM.

Figure 14: Hybrid code sequences

The read and write barriers first check that the
transaction record is shared (hence no conflicting update
by a software transaction). The write barrier logs the
transaction record so that it can increment the version
number on commit to notify any concurrent software
transaction of the update. The published HyTM
approaches [17][23][29] all use a similar approach; that is,
a hardware transaction checks for conflicting accesses by
concurrent software transactions, and then takes some
action to notify any concurrent SW transactions of its
changes. The HyTM execution time shown in the graphs
below is that of the transaction executing solely as a
hardware transaction. That is, we use the best case
performance of HyTM.

Note that if a program has high cache reuse HASTM
will be more efficient than HyTM schemes. HyTM always
needs to check whether a concurrent software transaction
is conflicting. In HASTM the mark bit lets us avoid the
check on subsequent accesses.

We wrote a number of micro benchmarks to emulate
the memory characteristics of the critical regions in the
Java/pthreads workloads (in Figure 13). We varied the
percentage of loads between 60% to 90%, and the load
cache reuse percentage from 40% to 60%. We kept the

uint32 HybridRead(uint32* addr) {
uint32 txnRecValue = *(getTxnRec(addr));
if (isShared(txnRecValue))
 return (*addr)
/* contention policy … abort */

}
HybridWrite(uint32* addr, uint32 value) {
 uint32 txnRecValue = *(getTxnRec(addr));
 if (isShared(txnRecValue)) {
 logWrite(txnRec, txnRecValue);
 *addr = value;
 }
 /* contention policy … abort */
}

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 9

store cache reuse constant at 40%. Our HASTM
performance is mostly insensitive to store reuse since we
don’t filter write barriers. We then measured the
performance of simply executing the critical section using
the different TM implementations. Figure 15 shows the
performance comparison. The baseline is the
corresponding STM execution time.

0.55

0.6

0.65

0.7

0.75

0.;

0.;5

0.<

0.<5

608 Load 708 Load ;08 Load <08 Load
:oa7 fraction

;
el

at
i4

e
e.

ec
ut

io
n

tim
e

Cautious 608 Miss Cautious 508 Miss Cautious 408 Miss
HASTM 608 Miss HASTM 508 Miss HASTM 408 Miss
Hybrid 608 Miss Hybrid 508 Miss Hybrid 408 Miss

Figure 15: TM performance comparison

At a 60% cache reuse rate, HASTM is as good or
better (upto 15%) than Hybrid. At a 50% cache reuse rate,
HASTM is about 5% slower if the critical section contains
60% loads, but it is as good or better in other cases. At a
40% cache reuse rate, HASTM is about 10% slower, but
ends up being 7% faster if loads constitute 90%.

The Cautious mode denotes a HASTM execution
when it never transitions into aggressive mode. It
represents the speedup over a pure STM for transactions
that would exceed the cache, or survive a context switch,
etc. At 80% loads, even the Cautious mode gets
comparable to Hybrid, but at the lowest point (60% loads,
60% misses) it is about 20% slower.

Figure 16 shows the single thread performance of
HASTM on the concurrent data structures. The baseline is
sequential execution time (i.e., the fastest single thread
execution time). Note that an ideal unbounded HW TM
implementation would execute no faster than the
sequential execution time.

HASTM performs as well as HyTM on all the
benchmarks. Moreover, it has a small overhead when
compared to the sequential execution time, and
significantly cuts down the STM overhead. The
improvement is the smallest in the hashtable because of its
small cache reuse (< 3%). The hashing function spreads
nodes across buckets, so traversing a single bucket leads to
poor cache behavior. The improvement is the largest in the
Btree because of its high cache reuse (68%). The high
cache reuse arises in part due to the good spatial locality of
the Btree keys. The BST has a cache reuse of 38%.

<=> <=>
<=<

<=> <=>

<=<

<=?
<=@

<=A

<=<

<=>

<=B

1

1.2

1.4

1.6

1.;

2

2.2

2.4

BSTree Hashtable Btree

;
at

io
 to

 s
eC

 e
.e

cu
tio

n
tim

e

HASTM Hybrid-TM STM Loc0

Figure 16: Relative execution time for TM

schemes

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

BST Hashtable Btree

HASTM HASTM-Cautious HASTM-NoReuse STM

Figure 17: Performance breakdown for HASTM

HASTM gains from optimizing validation, eliminating
read-logging, and exploiting cache reuse. Figure 17 shows
how each part contributes to the performance. (HASTM-
Cautious means HASTM running always in cautious mode
and hence without read log elimination, HASTM-NoReuse
means HASTM that does not leverage cache reuse). The
baseline is sequential execution time. As expected, the
hashtable benefits mostly from eliminating read logging
and optimizing validation, rather than from cache reuse,
while the btree and the BST benefit significantly from
reuse. This is borne out by the fact that the cautious mode
(where HASTM does not eliminate read logging) does not
show any performance benefit – in fact, the cautious mode
execution time is longer than the STM. This is interesting
because the cautious mode actually executes about 5%
fewer instructions. The cautious mode takes longer
because: (1) the conditional branch after the loadTestMark
takes somewhat longer to resolve than ordinary conditional
branches since it is dependent on the load instruction
immediately preceding it. (2) the STM code sequences
(Figure 4) are friendly to out of order execution. Loading
the transaction record (i1) is independent of the code
sequence to get the read log pointer (i6), while the final
code sequence (i11-i13) is completely independent.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 10

Therefore, the STM code can compensate for the longer
code path compared to the cautious mode.

7.4 HASTM multi-core results

We show the HASTM performance in a multi-core
setting in Figure 18-Figure 20. The experiments are set up
as in the single core case, except that the data structure
operations are now performed concurrently by multiple
cores. By its nature, the hashtable benchmark has low
contention; it does not present new issues in a multi-core
setting and serves to confirm that a HASTM
implementation scales well under low contention (Figure
20). The Btree and the BST exhibit interesting multi-core
characteristics and show that it is vital for a HW
accelerated TM implementation to avoid spurious aborts.

HASTM scales as well as the STM for the BST and
provides the best performance as we increase the number
of cores. The locking algorithm for the BST locks the root
to handle tree rotations; thus the locking approach does not
scale at all (Figure 18). Both the HASTM and STM
configurations simply replace the lock acquire and release
by transaction begin and end; thus the BST results show
the advantages of transactions over locks.

0.3

0.5

0.7

0.<

1.1

1.3

1.5

1 core 2 core 4 core
Num%er of cores

-.
ec

ut
io

n
tim

e
co

m
pa

re
7

to
 s

in
gl

e
co

re
 lo

c8
 ti

m
e

HASTM STM Loc0

Figure 18: Multi-core scaling for BST

For the btree, the STM scales somewhat better than
the HASTM as we increase the number of cores, but the
HASTM implementation still performs the best. In the
btree, multiple cores interfere destructively – prefetches
and speculative accesses from one core kick out marked
cache lines from another core, and the inclusive nature of
the cache hierarchy also results in one core accidentally
kicking out marked cache lines of another core. With
multiple cores, HASTM encounters more situations where
it is unable to leverage the HW (mark counter) for
validation, and falls back on the software validation. As a
result, the relative performance improvement from
HASTM drops as we increase the number of cores since
the performance improvement increasingly relies solely on
the filtering benefit.

0.3

0.5

0.7

0.<

1.1

1.3

1.5

1.7

1.<

1 core 2 core 4 core
Num%er of cores

-
.e

cu
tio

n
tim

e
co

m
pa

re
7

to
 s

in
gl

e
co

re

lo
c8

 ti
m

e

HASTM STM Loc0

Figure 19: Multi-core scaling for Btree

0.2
0.3
0.4
0.5
0.6
0.7
0.;
0.<

1
1.1
1.2

1 core 2 core 4 core
Num%er of cores

-
.e

cu
tio

n
tim

e
co

m
pa

re
7

to
 s

in
gl

e
co

re

lo
c8

 ti
m

e

HASTM STM Loc0

Figure 20: Multi-core scaling for hash table
The importance of avoiding spurious aborts is

illustrated in Figure 21 and Figure 22. We compare
HASTM, STM and a naïve TM implementation that
always tries a transaction first in aggressive mode, and
then re-executes in cautious mode if the transaction aborts.
The naïve TM implementation is similar to a HW TM
implementation with SW fallback (HyTM) – first try the
transaction in HW and then execute using a STM. In both
the workloads, the naïve TM implementation scales poorly
and performs worse than the pure STM at 4 cores. This is
because the cores interfere destructively in both the
workloads and abort transactions in aggressive mode due
to “false conflicts”– accidental eviction of cache lines --
causing many re-executions. This does not affect HASTM
as it starts off in cautious mode and remains in cautious
mode (where it gets accelerated but does not suffer from
spurious aborts) till the number of evictions/invalidations
is below a threshold. As a result, in practice, transactions
do not get spuriously aborted in HASTM.

Note that a solution that leveraged HTM for small
transactions, and relied on STM for large transactions
would show even worse scaling than the naïve
implementation. The HW transactions would get aborted
in the same way as the aggressive mode, while the fallback
SW transaction would see no acceleration. This shows that
a robust TM system should be able to apply HW

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 11

acceleration to transactions which abort only on precise
conflicts since there may be significant spurious aborts in a
modern OOO processor, and these spurious aborts are not
directly related to the transaction size. Moreover, this also
shows the importance of precise simulation since these
effects would not be seen otherwise.

0.3

0.5

0.7

0.<

1.1

1.3

1.5

1 core 2 core 4 core
Num%er of cores

-.
ec

ut
io

n
tim

e
co

m
pa

re
7

to
 s

in
gl

e
co

re
 lo

c8
 ti

m
e

HASTM NaSve Aggressive STM

Figure 21: BST scaling (different TM schemes)

0.3

0.5

0.7

0.<

1.1

1.3

1.5

1.7

1.<

1 core 2 core 4 core
Num%er of cores

-
.e

cu
tio

n
tim

e
co

m
pa

re
7

to
 s

in
gl

e
co

re

lo
c8

 ti
m

e

HASTM NaSve-Aggressive STM

Figure 22: Btree scaling (different TM schemes)

8. Related Work

The closest related work is hybrid TM
implementations [17][23][29]. In the hybrid approach, an
HTM is used to run transactions first, failing which
transactions are tried using STM. The main difference to
our approach is that hybrid TM does not accelerate the
transactions executing in SW, and therefore large
transactions or semantically rich transactions get no benefit
from the hardware support. All of these approaches
involve a more complex hardware scheme than ours, such
as support for speculative stores, hardware structures to
guarantee some minimum sized transaction, and changes
to the coherence protocol. These approaches have also not
considered language integration issues.

LogTM [24] and VTM [18] use a software-hardware
co-designed approach. Neither of them addresses language
issues such as garbage collection. LogTM also does not

support transactions of unbounded duration. VTM
architects semantics into the hardware; for example,
conflict detection, eager acquire, and so on. We deal with
semantically rich transactions and do not implement any
transaction semantics in hardware.

Our architectural support leverages hardware’s ability
to detect first use of cache lines efficiently, and to monitor
cache lines for remote updates. The ability to detect first
use of cache lines efficiently is similar to informing
loads[15]. The monitoring ability has been proposed in
HTM implementations and other speculative threading
work[32].

Herlihy and Moss [14] proposed HTM as a method of
implementing lock-free data structures, but their HTM had
size and other restrictions. Subsequently, UTM and LTM
[3] proposed unbounded transaction support in hardware.
This requires complex hardware support, and even then,
LTM only supports transactions that fit in physical
memory. TCC [9] proposed transactions as a new
programming paradigm, but their implementation requires
heavyweight hardware mechanisms including global
consensus mechanisms. TLR[19] uses speculative lock
elision and a time-stamping mechanism to provide a
transactional semantics. Martinez [21] describes a related
mechanism that identifies a thread guaranteed to win all
conflicts.

Our TM implementation is based on the STMs in
[1][7][12][26]. Shavit and Touitou [28] introduce the term
STM and present a static STM, which requires advanced
knowledge of the locations involved in the transaction.
DSTM [13], FSTM, and ASTM [20] provide dynamic
object-based STM APIs, which provide transaction
semantics at the granularity of objects. Compiler support
for STMs is discussed in [1][12]. None of these
implementations use any HW support. Composition
constructs, partial rollback, and language issues are
discussed in [11]. The HPCS languages [2][6][5] specify
transactions in lieu of locks for concurrency control.

9. Conclusions

This paper presents the first hardware accelerated
software transactional memory (HASTM) system. We
propose novel ISA extensions and hardware primitives that
allow software transactions to filter out unnecessary barrier
operations. We make novel extensions to a highly
optimized STM to leverage the ISA extensions. This
allows transactions to leverage hardware acceleration in all
cases, for example nested transactions, unbounded
transactions, transactions surviving a GC, transactions
using object-based conflict detection, and so on. Finally
we evaluate our system on a set of transactional workloads
and compare the performance against other hardware
supported TM schemes. Our measurements show that
single-thread HASTM performance is comparable to
HTM. With multiple threads, HASTM scales as well as

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 12

STM, and HASTM’s resilience to false aborts allows it to
scale better than HTM.

10. References

[1] Adl-Tabatabai, A., Lewis, B.T., Menon, V.S.,
Murphy, B.M., Saha, B., Shpeisman, T. Compiler and
runtime support for efficient software transactional
memory. PLDI 2006.

[2] Allan, E., Chase, D., Luchango, V., Maessen, J., Ryu,
S., Steele Jr., G., Tobin-Hochstadt, S. The Fortress
language specification, version 0.618. Sun
Microsystems Technical Report, April 2005.

[3] Ananian, C.S., Asanovic, K., Kuszmaul, B.C.,
Leiserson, C.E., Lie, S. Unbounded Transactional
Memory. HPCA 2005.

[4] Carlstrom,B., Chung, J., McDonald, A., Chafi,H.,
Kozyrakis, C., and Olukotun,K. The Atomos
transactional programming lanuage. PLDI 2006.

[5] Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C.,
Kielstra, A., von Praun, C., Saraswat, V., Sarkar, V.
X10: An object oriented approach to non-uniform
cluster computing, OOPSLA 2005.

[6] Cray Inc. The Chapel language specification, version
0.4. Technical Report, Cray Inc. Feb 2005.

[7] Ennals, R. Cache sensitive software transactional
memory. Technical Report.

[8] Gray, J. and Reuter A. Transaction processing:
concepts and techniques.

[9] Hammond, L., Carlstorm, B.D., Wong, V., Hertzberg,
B., Chen, M., Kozyrakis, C., and Olukotun, K.
Transactional coherence and consistency. ASPLOS
2004.

[10] Harris, T.L. and Fraser, K. Language support for
lightweight transactions. OOPSLA 2003.

[11] Harris, T.L., Marlow, S., Peyton Jones, S., Herlihy, M.
Composable memory transactions. PPoPP 2005.

[12] Harris, T., Plesko, M., Shinnar, A., and Tarditi, D.
Optimizing Memory Transactions. PLDI 2006.

[13] Herlihy, M., Luchango, V., Moir, M., Scherer III,
W.M. Software transactional memory for dynamic
sized data structures. PODC 2003.

[14] Herlihy, M. and Moss, J.E.B. Transactional memory:
architectural support for lock-free data structures.
ISCA 1993

[15] Horowitz, M., Martonosi, M., Mowry, T. C. and
Smith, M. Informing loads: Enabling software to
observe and react to memory behavior. Stanford
University TR, July 1995.

[16] Hosking, A, Moss, J.E.B. Nested transactional
memory:Model and preliminary Sketches SCOOL
2005.

[17] Kumar, S., Chu, M., Hughes, C., Kundu, P., Nguyen,
A. Hybrid transactional memory. PPoPP 2006.

[18] Rajwar, R., Herlihy, M., and Lai, K. Virtualizing
transactional memory. ISCA 2005.

[19] Rajwar, R., Goodman, J. R. Transactional lock-free
execution of lock-based programs. ASPLOS 2002.

[20] Marathe, V. J., Scherer, W. N., and Scott, M. L.
Adaptive software transactional memory. Technical
report 868. Computer Science Department, University
of Rochester, 2005.

[21] Martinez, J.F., and Torellas, J. Speculative
Synchronization: Applying thread level speculation to
explicitly parallel applications. ASPLOS 2002.

[22] McDonald, A., Kozyrakis, C., Olukotun, K.
Architectural Semantics for Practical Transactional
Memory, ISCA 2006.

[23] Damron, P., Fedorova, A., Lev, Y., Luchango, V.,
Moir, M., Nussbaum, D.. Hybrid Transactional
Memory. ASPLOS 2006.

[24] Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D.,
Wood, D.A. LogTM: Log-based Transactional
Memory. HPCA 2006.

[25] Ringenberg, M.F. and Grossman, D. AtomCAML:
First-class atomicity via rollback. ICFP 2005.

[26] Saha, B., Adl-Tabatabai, A., Hudson, R., Cao Minh,
C., Hertzberg, B. McRT-STM: A high performance
software transactional memory system for a multi-core
runtime. PPoPP 2006.

[27] Scherer III, W. M. and Scott, M. Contention
management in dynamic software transactional
memory. PODC 2005.

[28] Shavit, N., and Touitou, D. Software transactional
memory. PODC 2005.

[29] Shriraman, A., Marathe, V.J., Dwarkadas, S., Scott,
M.L., Eisnstat, D., Heriot, C., Scherer III, W.N.,
Spear, M.F. Hardware acceleration of software
transactional memory. Techical report 887, Computer
Science Department, University of Rochester, 2006.

[30] Chung, J., Chafi, H., Cao-Minh, C., McDonald, A.,
Carlstrom, B.D., Kozyrakis, C., Olukotun, K. The
Common Case Transactional Behavior of
Multithreaded Programs, HPCA 2006.

[31] Moravan, M., Bobba, J., Moore, K., Yen, L., Hill, M.,
Liblit, B., Swift, M., Wood, D. Supporting Nested
Transactions in LogTM, ASPLOS 2006.

[32] S. Gopal, T. N. Vijaykumar, J. E. Smith, G. S. Sohi.
Speculative Versioning Cache, Fourth Int. Symposium
on High Performance Computer Architecture, Feb.
1998.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

