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Abstract 
Transactional memory provides a concurrency control 
mechanism that avoids many of the pitfalls of lock-based 
synchronization. Researchers have proposed several 
different implementations of transactional memory, 
broadly classified into software transactional memory 
(STM) and hardware transactional memory (HTM). Both 
approaches have their pros and cons: STMs provide rich 
and flexible transactional semantics on stock processors 
but incur significant overheads. HTMs, on the other hand, 
provide high performance but implement restricted 
semantics or add significant hardware complexity.  

This paper is the first to propose architectural support for 
accelerating transactions executed entirely in software. We 
propose instruction set architecture (ISA) extensions and 
novel hardware mechanisms that improve STM 
performance. We adapt a high-performance STM 
algorithm supporting rich transactional semantics to our 
ISA extensions (called hardware accelerated software 
transactional memory or HASTM). HASTM accelerates 
fully virtualized nested transactions, supports language 
integration, and provides both object-based and cache-line 
based conflict detection. We have implemented HASTM in 
an accurate multi-core IA32 simulator. Our simulation 
results show that (1) HASTM single-thread performance is 
comparable to a conventional HTM implementation; (2) 
HASTM scaling is comparable to a STM implementation; 
and (3) HASTM is resilient to spurious aborts and can 
scale better than HTM in a multi-core setting. Thus, 
HASTM provides the flexibility and rich semantics of STM, 
while giving the performance of HTM. 

1. Introduction 

As single thread performance hits the power wall, 
hardware architects have turned to chip-level 
multiprocessing (CMP) to increase processor performance. 
Applications must now be concurrent to exploit this 
increased computational power. Today, programmers use 
lock-based synchronization for concurrency control. 
Composing lock-based software modules can lead to well-
known problems such as deadlock and poor scalability. 
Transactional memory (TM) [14] provides an alternate 
concurrency control mechanism that avoids the pitfalls of 
lock-based synchronization while providing scalability. 

TM implementations broadly classify into software 
transactional memory (STM) and hardware transactional 
memory (HTM). STM  implements transactional memory 
entirely in software on stock hardware 
[1][7][10][11][13][26]. STM can support rich transaction 
semantics and can integrate with a language runtime. 
While STM performance scales well with the number of 
processors, it suffers from overheads such as memory 
barriers (i.e., instrumentation code) for memory accesses 
inside transactional code blocks.  

HTM defines new ISA that provides transactional 
semantics for memory accesses [3][9][14][18]. HTM 
implementations offer superior performance, but their 
restricted semantics don’t directly support transactional 
language constructs, which define rich transaction 
semantics such as nesting with partial roll-back, blocking 
primitives that compose, and object or element granularity 
conflict detection. Recent proposals augment HTM 
semantics [22][31], but add significant hardware 
complexity and even then, do not fully match the 
requirements of transactional language constructs. 

Hybrid transactional memory (HyTM) [17][23][29] 
blends the performance of HTM with the flexibility of 
STM by executing a transaction first using HTM and then 
using STM if HTM fails. HyTM, however, constrains a 
fast transaction to the restricted semantics of the 
underlying HTM, and provides no hardware support for 
transactions whose semantics (or size) do not match HTM.  

This paper proposes an alternative model for high-
performance TM systems: hardware accelerated software 
transactional memory (HASTM). In HASTM, transactions 
always execute in software but use architectural support to 
improve performance. The architectural support 
accelerates all transactions, including large transactions 
that exceed the cache size, long running transactions that 
span OS scheduling quanta, nested transactions, 
transactions interrupted by a garbage collection, and 
others. The resulting TM system integrates into a language 
runtime, executes semantically rich transactions more 
efficiently than a pure STM, and executes simple 
transactions almost as efficiently as HTM.  

In contrast to previous approaches, our architectural 
support does not implement any TM semantics in 
hardware. Instead, it provides mechanisms that accelerate 
an STM and may have uses beyond TM. The ISA 
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extensions have a default behavior that can be 
implemented trivially in processors that do not want to 
implement the hardware support. STM implementations 
run correctly on such processors, albeit without 
performance improvement. 

2. TM implementation requirements 

Recent language proposals define a block-structured 
atomic construct that provide rich transaction semantics 
in lieu of locks [2][4][5][6]. Beyond the basic requirements 
of unbounded size and duration, they impose the following 
constraints on an implementation: 

Language environment integration. A TM 
implementation must integrate with modern language 
features such as garbage collection (GC) and exception 
handling. The TM implementation must allow a garbage 
collector (most likely running as a different thread) to 
suspend a transaction, and to inspect and modify its state – 
including speculative state [1][12] – without aborting. 
Buffered state (e.g., logged data) must contain metadata to 
allow precise GC [1][12][25]. The TM implementation 
should also integrate with tools such as debuggers and 
performance analyzers, which also require suspension of a 
transaction, access to its state, and access to metadata 
describing state buffered by the TM system. In essence, a 
TM system must allow inspection, modification, and 
reflection of its speculative state by a thread not running in 
the same transaction context. HTM proposals have largely 
not addressed these requirements. HyTM can address these 
by reverting to a software transaction, which sacrifices 
performance. HASTM integrates into the language 
environment – for example, the runtime can suspend a 
hardware-accelerated transaction for precise GC, 
performance diagnostics, and so on. 

Language-level conflict detection granularity. The 
TM system should detect conflicts at a granularity that 
matches language entities such as objects or array 
elements. This enables compiler optimizations and allows 
programmers to reason about data conflicts in their 
algorithm. HTMs (and HyTM, which leverages HTM) 
detect conflicts at the cache line granularity, which can 
cause false conflicts and hinders compiler optimizations. 
HASTM supports both object- and cache-line granularity 
conflict detection and leverages compiler optimizations. 

Advanced transaction semantics. The TM system 
should support closed nesting with partial rollback, 
blocking, and user-initiated aborts. Nested transactions and 
blocking primitives that compose [11][1] allow 
programmers to compose software components in a safe, 
scalable, and extensible way.  Some recent HTM proposals 
support nesting [16][22] at significant hardware 
complexity cost, while others (including HyTM) flatten 
nested transactions. HASTM accelerates nested 
transactions with partial rollback. 

Flexible contention management. Prior research [27] 
showed that no one contention policy best matches all 
applications. Moreover, accurate contention diagnostics 
greatly enhance transactional programming. HTM systems 
have largely ignored this requirement. We believe HTM 
will have difficulty in providing diagnostics because it 
leverages cache coherence, which uses physical addresses. 
STM (and HASTM) can provide better diagnostics since it 
logs all transactional activity in the application space. 

Consistent performance across a variety of 
transactions. Transactions whose footprint exceed the 
cache size of a modern processor can consume more than 
20% of the transactional execution time [30]. A TM 
system should also accelerate such transactions to prevent 
them from limiting performance. In the absence of many 
real-world applications, a TM implementation should not 
bake into hardware assumptions about the common case 
behavior of transactions. We show in Section 7 that 
HASTM accelerates transactions across the board.  

3. Architectural support for STM 

To accelerate STM, we propose a novel architecture 
extension that provides a generic filtering mechanism for 
software. This mechanism allows software to mark fine-
grain blocks of memory using mark bits. Mark bits are new 
meta-data that is private per thread and non-persistent. 
There are two key capabilities enabled with the 
mechanism. First, software can query if the mark bit has 
been previously set for a single given block of memory 
and that there has been no writes to the memory by other 
threads since the block was marked. Second, software can 
query if there has potentially been any writes by other 
threads to any of the set of memory blocks the software 
has marked. 

Software sets and queries the mark bits with new 
instructions discussed below. Hardware may discard a 
mark bit as long as it records that it has done so. Hardware 
records that a mark bit has been discarded by incrementing 
a saturating mark counter that is part of the architected 
state of a thread. Software may query whether any of the 
bits have been discarded by reading the mark counter. 
Mark bits are discarded when a coherency event occurs 
such that another thread may modify the memory block the 
mark bit is associated with. Mark bits can also be 
discarded because of hardware capacity limits. In our 
implementation we also discard all mark bits on priority 
transitions (ring transitions in IA32 terminology).  The 
mark counter does not have to be saved on context 
switches as it can be restored to a default value of all ones 
by either hardware or software. 

3.1 Hardware Implementation 

The mark bits can be implemented by adding a small 
additional amount of state to the coherency state of cache 
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lines. The mark bits can reside in any level of the cache; in 
this paper we assume they reside only in the first-level data 
cache. For caches shared by multiple hardware threads, 
such as in the case of simultaneous multithreading, each 
thread has its own set of mark bits in the cache, and stores 
by one thread invalidate other threads’ mark bits. 

For our implementation we augment the data cache’s 
tag with one mark bit per 16-Byte subblock of a cache line; 
we model a 64-byte cache line, so that is 4 mark bits per 
cache line. Figure 1 shows the state diagram for a single 
cache line simplified to one mark bit per cache line. When 
the processor brings a line into the cache, it clears all the 
mark bits for the new line. The mark bits do not persist 
outside of the cache – once a line leaves the cache or is 
invalidated, the values of its mark bits disappear. We refer 
to a cache line with any mark bit set as a marked cache 
line. The processor increments the mark counter whenever 
a marked cache line gets evicted or snooped; that is, when 
a marked cache line transitions to the invalid state. 

 

 
Figure 1: Cache line transitions 

We extend the ISA with six new instructions to 
modify and query the mark bits and with one new register 
to hold the mark counter. The new instructions provide a 
general capability that applies to any ISA; as such we 
provide an abstract definition of the instructions. 

loadSetMark(addr): loads the value at memory 
location addr and sets the mark bit associated with addr.  
If the address spans across multiple blocks (or multiple 
cache lines), then all the mark bits are set. 

loadResetMark(addr): loads the value at memory 
location addr and clears the mark bit associated with addr. 
If the address spans across multiple blocks (or cache lines), 
then all the mark bits are cleared. 

loadTestMark(addr): loads the value at memory 
location addr and sets the carry flag to the value of the 
mark bit. If the address spans across multiple blocks (or 
cache lines), then the logical AND of all the mark bits are 
put into the carry flag. 

resetMarkAll(): clears all mark bits in the cache and 
increments the mark counter. 

resetMarkCounter(): resets mark counter.  
readMarkCounter(): reads mark counter value.  

For our study we added the new instructions to the 
IA32 instruction set using unused 3 Byte opcodes and 
supporting only the simplest Base + Displacement 
addressing mode. Variations of the load instructions exist 
for accessing different data types (e.g., single and double 
precision floating-point; 8-, 16-, 32-, and 64-bit integer). 
We only implemented a single filter, but one could support 
multiple filters concurrently with independent mark bits to 
enable additional software uses. Our minimum granularity 
is 16 bytes but we have variants of the instructions that 
support larger granularities up through the cache line size 
(64 byte) and operate on multiple mark bits 
simultaneously. 

3.2 Usage Overview 

The mark bits allow software to track cache residency 
of data and thus whether other processors could have 
potentially written to a datum between two accesses. By 
loading a value using loadTestMark, software can 
simultaneously load a value from memory and test the 
mark bit of the memory address. If the mark bit is set, 
software knows not only that it has accessed the address 
before by using a loadSetMark instruction, but also that the 
cache line has not been invalidated since that last access, 
implying that no other thread has written to that cache line 
in the interim. In Section 5, we show how to use this 
filtering capability to avoid STM read barriers for memory 
locations that the STM has already logged. 

The mark counter allows software to monitor whether 
any of the data it has accessed could have been written by 
another processor. If the mark counter value is zero, 
software knows that none of the lines it has accessed using 
loadSetMark has been invalidated, implying that no other 
processor has written to any of those lines since the last 
time software reset the mark counter. In Section 5, we 
show how to use this monitoring mechanism to avoid STM 
conflict checking (i.e., validation) overheads. 

3.3 Default Implementation 

To allow maximum flexibility in future designs, 
hardware features should create as little legacy as possible 
for future processor generations. Our proposed ISA 
adheres to this: it allows a default implementation that 
does not support marking or monitoring of marked lines. 
An installed code base using the new ISA will execute 
correctly but without performance improvement running 
with this default behavior. The following gives the default 
behavior: 

loadSetMark(addr): loads the value at memory 
location addr and increments the mark counter. 

loadResetMark(addr): loads the value at memory 
location addr. 

loadTestMark(addr): loads the value at memory 
location addr and clears the carry flag. 

Line: valid 
Mark bit: 0 

Line: invalid 
Mark bit: 0

Line: valid 
Mark bit: 1 

load/store/prefetch/ 
loadResetMark 

invalidate/eviction 

     invalidate/eviction 
increment mark counter 

LoadSetMark 

  loadSetMark 

LoadResetMark 

LoadSetMark 

   loadResetMark 
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resetMarkAll(): increments the mark counter. 
resetMarkCounter(): resets mark counter. 
readMarkCounter(): reads mark counter. 
It is easy to see that the default behavior is 

functionally correct. Suppose a program P executes on a 
processor with the full implementation of the new ISA. 
Consider the scenario where every time a mark bit is set, 
the cache line immediately gets evicted. This represents 
one legal execution (say E) of P. With the default ISA 
implementation, P always has the execution sequence E. 

The default implementation also allows the mark bits 
to be easily virtualized. For example, a processor could 
fully implement mark bits at cache line granularity (64 
bytes) and provide default implementations for the mark 
bits at sub-cache line granularity. A processor could 
support multiple sets of independent mark bits (filters). 
The processor could either fully support all the bits, or 
fully implement only some set of filters and use the default 
implementation for the rest.  

4. Base STM algorithm 

Our base STM algorithm is based on the recent STM 
algorithms presented in [1][12][26]. The STM provides a 
runtime API supporting language constructs for declaring 
atomic blocks. In this section, we describe only the details 
relevant to this paper and reference prior publications for 
elided details. 

The base STM algorithm implements strict two-phase 
locking for writes and optimistic concurrency control using 
versioning for reads. It updates memory locations in place, 
logging the location’s original value in an undo log in case 
of an abort. Thus, like UTM[3] and LogTM[24], the STM 
implements eager version management. Similarly, the 
STM detects conflicts eagerly on accesses to locations 
written by other transactions, reducing wasted work. The 
STM associates a pointer-sized transaction record with 
each datum accessed inside a transaction. The transaction 
record can be in either the shared state, allowing read-only 
access to the datum by any number of transactions, or the 
exclusive state, allowing read-write access by a single 
transaction that owns the record. In the shared state, the 
transaction record contains an odd-valued version number. 
In the exclusive state, it contains a pointer to the owning 
transaction’s word-aligned transaction descriptor.  

The mapping between a datum D and transaction 
records is flexible, allowing conflict detection granularity 
and policy decisions that depend on the language 
environment. In managed environments (e.g., Java), every 
object contains a transaction record in its header, 
facilitating object granularity conflict detection [1][12]. 
The transaction record address is simply an offset from the 
base of the object containing the datum D.  

In unmanaged environments (e.g., C/C++), the STM 
hashes a variable’s address into a global table of 
transaction records, facilitating cache line or word 

granularity conflict detection [26]. Given a datum D whose 
address is in a register addr, the following code sequence 
loads the transaction record address into the register rec:  

mov rec, addr 
and rec, 0x3ffc0 
add rec, TxRecTableBase 

This code extracts bits 6-17 of the address as an index 
into a global transaction record table whose address is 
given by the constant TxRecTableBase. The transaction 
records are 64-byte cache line aligned to prevent ping-
ponging, so the extracted bits also offset into the table.  

For each transaction, the STM maintains a read set, 
write set, and undo log in the transaction’s descriptor [1]. 
The read (write) set contains the transaction records of the 
data read (written) by the transaction, and the version 
numbers held by the transaction records at the time the 
transaction read (wrote) the data. The undo log contains 
the old values of the data written in the transaction. On 
abort, a transaction reverts modified memory locations 
using the undo log. On commit or abort, a transaction sets 
all the transaction records that it owns (i.e., the ones in its 
write log) back to the shared state but with an incremented 
version number. On commit and periodically during the 
transaction, a transaction validates (Figure 2) the read set 
by checking that the version numbers on all the transaction 
records in its read set have not changed. This ensures that 
no other transaction has updated any of its read data.  

 
Figure 2: Read set validation 

Before accessing a shared datum D, a transaction must 
call the STM read (write) barrier function stmRdBar 
(stmWrBar) with the transaction record for D. Figure 3 
shows pseudo-code for these functions. If the transaction 
already owns the record, then these functions simply 
return. If some other transaction owns the record, then a 
contention management function (handleContention) either 
aborts or waits until the record becomes available and 
returns the record’s value (a version number). The write 
barrier attempts to acquire ownership of the record by 
setting it to the current transaction’s descriptor via a 
compare-and-swap operation (CAS). The logRead and 
logWrite functions log the transaction record pointer and 
its version number in the read and write sets, respectively. 

validate() { 
for <txnrec,ver> in transaction’s read set 
  if (*txnrec != ver)  
    abort(); 

} 
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Figure 3: Read and write barrier algorithms 
Before writing to a shared variable, a transaction must 

log the old value of the variable in the undo log. In a 
managed environment, the undo log entries need additional 
metadata to enable garbage collection during a 
transaction[1][12]. Prior hardware approaches to providing 
unbounded transactions[18][24] make the structure of logs 
architectural. Unfortunately, this does not work in a 
garbage collected system where the structure of the log 
depends on the language implementation. 

Figure 4 shows the inlined read barrier fast path. 
There are two slow paths (not shown), one at label 
contention and another at label overflow. The read barrier 
and read set validation overheads dominate STM 
overheads [26] and are thus the prime targets for 
optimization and hardware acceleration. Compiler and 
runtime optimizations [1][12] eliminate some of the 
overheads but have been used only in managed 
environments. Compilation scope and aliasing limit 
compiler optimizations; as a result, STM systems still 
show significant overhead [1][12]. Our hardware-
accelerated STM starts with a STM that uses compiler 
optimizations and improves its performance further. 

 

 
Figure 4: Inlined read barrier fast path 

5. Hardware accelerated STM 

HASTM uses the ISA from Section 3 to eliminate 
redundant logging and to eliminate validation overhead 
altogether for transactions whose transaction records fit in 
the cache. We assume a minimum non-empty object size 
of 16 Bytes for object-based conflict detection1. This is 
already the case for most 64-bit managed runtimes 

Figure 5 shows the HASTM object-based read barrier. 
When a transaction executes a read barrier on a transaction 
record T for the first time, the loadSetMark (line 3) sets the 
mark bit, and the normal read barrier sequence checks T 
and appends it to the read set. On subsequent executions of 
a read barrier on T the conditional branch (line 2) succeeds 
and the read barrier completes if the line holding T has not 
been invalidated in the interim. Thus, the fast path 
reduces from 12 instructions in the STM to 2 
instructions. The HASTM write barrier also sets the mark 
bit on the transaction record so that subsequent read 
barriers take the fast path.  

 
Figure 5: HASTM object-based read barrier 
Validation (Figure 6) first checks the mark counter to 

detect whether marked lines were invalidated. If none of 
the marked lines were invalidated, then it avoids validation 
overhead; otherwise, it checks the version numbers in the 
read set. Note that invalidation of a marked cache line does 
not by itself abort a transaction; it simply forces a full 
software validation of the read set.  

 
Figure 6: HASTM validation 

In an unmanaged environment using cache-line 
conflict detection, we can optimize STM overheads further 
by using the mark bits to track cache lines holding the data 
accessed by a transaction (rather than the transaction 
                                                             
1 We only require that the minimum size be 16 bytes, objects 

don’t need to be aligned at 16 bytes. 

validate() { 
  markCount = readMarkCounter(); 
  resetMarkAll(); 

if (markCount == 0) /*no snoop or eviction*/ 
  return; 
/* perform full read set validation */ 
for <txnrec,ver> in transaction’s read set 
  if (*txnrec != ver)  
    abort(); 

}

loadTestMark eax, [rec] /* check 1st access */ 
jnae done 
loadSetMark eax, [rec] 
test eax, #versionmask  /*is a version no.*/ 
jz contentionOrRecursion 
mov ecx, [txndesc + rdsetlog] /*get log ptr*/ 
test ecx, #overflowmask 
jz overflow 
add ecx, 8                  /* inc log ptr */ 
mov [txndesc + rdsetlog], ecx 
mov [ecx – 8], rec          /* logging */ 
mov [ecx – 4], eax          /* logging */ 
done: 

stmRdBar(TxnRec* rec) { 
void* recval = *rec; 
void* txndesc = getTxnDesc(); 
if (recval == txndesc) return; 

  if (isVersion(recVal) == false) 
    recval = handleContention(rec); 
  logRead(rec,recval); 
} 
stmWrBar(TxnRec* rec) { 
  void* recval = *rec;  

void* txndesc = getTxnDesc(); 
if (recval == txndesc) return; 

  if (isVersion(recVal) == false) 
    recval = handleContention(rec); 

while (CAS(rec,recval,txndesc) == false) 
  recval = handleContention(rec); 
logWrite(rec,recval); 

} 

mov eax, [rec]     /* load TxRec */ 
cmp eax, txndesc   /* do I own exclusive */ 
jeq done 
test eax, #versionmask /* is a version no. */ 
jz contention  
/* logRead fast path: */ 
mov ecx, [txndesc + rdsetlog] /*get log ptr*/ 
test ecx, #overflowmask 
jz overflow 
add ecx, 8                    /*inc log ptr*/ 
mov [txndesc + rdsetlog], ecx 
mov [ecx – 8], rec            /* logging */ 
mov [ecx – 4], eax            /* logging */ 
done: 
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records logged by the transaction). Figure 7 shows this 
optimized read barrier code sequence. This code sequence 
first loads the accessed data using 
loadTestMark_granularity64. If the cache line has been 
accessed before in the transaction, then the conditional 
(line 2) succeeds and we are done with both the read 
barrier and the load. Thus the fast path reduces from 16 to 
2 instructions. 

 
Figure 7: HASTM cache line based read barrier 

It is also possible to mark both the data and the 
transaction record, so that if the marked line holding data 
leaves the cache then the read barrier slow path checks 
whether the transaction record is marked before executing 
the rest of the slow path. 

We have concentrated on filtering read barriers 
because that gives the most performance benefit, but an 
implementation could also filter STM write barrier and 
undo logging operations using additional mark bits.  

The mark bit filtering mechanism may not eliminate 
all redundant logging operations when the set of marked 
cache lines exceeds the capacity constraints of the cache 
(e.g., when marked cache lines are evicted due to set 
conflicts). In this case, the benefit from HASTM is 
proportional to the temporal locality inside a transaction. 

HASTM allows transactions to span seamlessly across 
context switches, page faults, and other interruptions. 
Before resuming, an interrupt executes resetMarkAll, 
which increments the mark counter (or the processor can 
execute resetMarkAll on an OS transition). This does not 
abort the transaction – it merely causes a full software 
validation on commit. On resumption, the transaction 
benefits from marking and temporal locality and hence 
gets accelerated, though the resumed transaction does not 
leverage the marking it performed before interruption.  

Similarly, HASTM allows a transaction to be 
suspended and its speculative state inspected and updated 
without aborting the transaction. A garbage collector (GC) 
or a tool can suspend a transaction, inspect and modify its 
logs (e.g., move an object referenced by a log entry), and 
even modify objects accessed by the transaction (e.g., 

update a reference to a moved object) without aborting the 
transaction. As long as the GC or tool does not change any 
of the transaction records (which the GC does not [1]), the 
suspended transaction will resume without aborting, but 
may lose some of its mark bits and perform a full software 
validation. 

Finally, HASTM does not require any additional 
mechanism over the basic STM for handling nested 
transactions, including for handling retry-orelse [1][11] 
(condition synchronization). We refer the reader to [1] for 
the STM handling of nested transactions. 

6. Aggressive-mode HASTM 

In this section we show that the hardware support 
proposed in Section 3 can reduce read barrier overheads 
further. Read set validation does not use the read log when 
the marked lines fit in the cache. Thus transactions whose 
marked lines fit in the cache don’t need read logging.  

To take advantage of this, the STM uses two modes of 
operation, aggressive and cautious (the mode described in 
Section 5). The transaction descriptor tracks this mode. 
When in aggressive mode, the read barrier slow path 
checks that the transaction record is in shared state and sets 
the mark bit (as before); however, it avoids appending the 
transaction record to the read set, assuming optimistically 
that its marked cache lines will remain valid until commit. 
On commit, the transaction validates the assumption by 
checking that the mark counter is zero. If its assumption 
was correct, then it commits. Otherwise it aborts, flips into 
cautious mode, and re-executes the transaction. 

For single-threaded applications, our current 
implementation always changes to aggressive mode after a 
transaction commits. For multi-threaded applications, it 
maintains a running ratio of aborted transactions and 
changes to aggressive mode only when the ratio falls 
below a low watermark. 

 
Figure 8: Aggressive mode HASTM read barrier 

Figure 8 shows the inlined read barrier for object-
based conflict detection leveraging aggressive mode. The 
slow path first checks that the transaction record contains a 
version number. It then checks the mode, and if running in 
aggressive mode, skips the read set logging. This makes 

loadTestMark eax, [rec] /* check 1st access */ 
jnae done 
loadSetMark  eax, [rec] 
test eax, #versionmask  /*is a version no.*/ 
jz contentionOrRecursion 
test [txndesc + mode], #aggressive 
jnz done              /*was aggressive mode*/ 
mov ecx, [txndesc + rdsetlog] /*get log ptr*/ 
test ecx, #overflowmask 
jz overflow 
add ecx, 8                  /* inc log ptr */ 
mov [txndesc + rdsetlog], ecx 
mov [ecx – 8], rec          /* logging */ 
mov [ecx – 4], eax          /* logging */ 
done:

loadTestMark_granularity64 eax, [addr] 
jnae complete 
mov eax, addr 
and eax, #0x3ffc0 
add eax, #TxRecTableBase /* TxRec table base*/ 
mov ecx, [eax]           /* load TxRec */ 
test ecx, #versionmask   /* check is version*/ 
jz contentionOrRecursion              
mov eax, [txndesc + rdsetlog] /*get log ptr */ 
test eax, #overflowmask 
jz overflow 
add eax, 8                   /* inc log ptr */ 
mov [txndesc + rdsetlog], eax 
mov [eax-8], addr             /*logging*/ 
mov [eax-4], ecx              /*logging*/ 
loadSetMark_graularity64 eax, [addr]  

          /*set mark bit */ 
complete: 
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aggressive mode reads very efficient: the hot path is 2 
instructions and the slow path is 7 instructions.  

 
Figure 9: Aggressive mode cache-line HASTM 

Figure 9 shows the read barrier for cache line based 
conflict detection. Again, the only modification is a check 
for aggressive mode after checking that the transaction 
record is a version number. In a managed environment, the 
compiler can avoid the dynamic test by generating 
different code versions for the aggressive and the normal 
modes. 

Unlike STM compiler optimizations, aggressive-mode 
HASTM can optimize read barriers across atomic blocks. 
Consider the code sequence in Figure 10. The first atomic 
block brings obj into the cache and sets the mark bit. The 
read barrier in the second atomic block will take the fast 
path if the cache line remains valid. In essence, aggressive-
mode HASTM allows redundancy elimination across 
atomic sections.  

 
Figure 10: Inter atomic optimizations 

7. Performance evaluation 

We will first show the basic STM performance and 
then present the HASTM performance to reinforce 2 
points: (1) STMs provide good scalability but suffer from 
single thread overhead; and (2) HASTM accelerates the 

main STM overheads while preserving STM scalability. 
We will also present an analysis of non-synthetic 
workloads to reinforce the HASTM design philosophy. In 
all HASTM simulations, we cleared the mark bits at the 
end of every transaction thus eliminating inter-atomic 
optimizations. Thus the measurements presented here 
represent HASTM performance conservatively – in 
practice HASTM would perform better. The STM uses the 
compiler optimizations described in [1][12], therefore the 
HASTM improvements are achieved on an already highly 
optimized software TM stack.  

We used a number of micro-benchmarks and 
concurrent data structures for HASTM performance 
evaluation. We simulated HASTM on an accurate IA32 
quad-core simulator. We modeled the new instructions 
precisely; for example, the loadSetMark consumes a store 
queue entry in addition to using the load port, and our 
results accurately reflect the performance of the branch 
prediction on the HASTM code’s additional branches.  

7.1 Basic STM performance 

Figure 11 reproduces the performance of the basic 
STM on a hashtable, a binary search tree (BST), and a 
Btree [1][26] on an IBM x445 XeonTM 16 way system. The 
STM version of the benchmarks (solid lines) use coarse-
grained atomic sections (i.e., the atomic sections 
encapsulate the code that coarse-grained locking would 
synchronize on) and use cache line granularity conflict 
detection. For each experiment, 20% of the operations 
were updates. All the data structures were populated before 
the experimental run. We use the same setup for the 
simulation results shown later. 
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Figure 11: STM (solid lines) vrs lock (dashed line) 

on TM workloads 
As is obvious, STM scales well but has a single thread 

overhead. This has also been true of other published STM 
results – at high processor counts, STM performs 
comparably to well-tuned lock code, but has a significant 
overhead at low processor counts. Figure 12 shows that the 

… 
expr; 
atomic { 
   Temp = obj.x; 
   … 
} 
expr; 
… 
atomic { 
   Temp1 = obj.y; /* leverage cache marking 
                     in previous atomic */      
    … 
} 

loadTestMark_granularity64 eax, [addr] 
jnae complete 
mov eax, addr 
and eax, #0x3ffc0 
add eax, #TxRecTableBase /* TxRec table base */ 
loadSetMark_granularity64 ecx, [eax]    
                         /* load TxRec */ 
test ecx, #versionmask   /* check is version */ 
jz contentionOrRecursion 
test [txndesc + mode], #aggressive 
jnz done        /* was in aggressive mode */     
mov eax, [txndesc + rdsetlog] /*get log ptr*/ 
test eax, #overflowmask 
jz overflow 
add eax, 8                    /*inc log ptr*/ 
mov [txndesc + rdsetlog], eax 
mov [eax-8], addr             /*logging*/ 
mov [eax-4], ecx              /*logging*/ 
done: 
loadSetMark_granularity64 eax, [addr]  
                         /* set filter bit */ 
complete: 
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majority of the STM overhead arises from the read barrier 
and validation. Other work has borne this out as well [29]. 
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Figure 12: STM execution time breakdown 

7.2 Workload analysis 

We analyzed a large number of Java and pthreads 
workloads2 to examine whether our hardware accelerated 
STM would help. Since HASTM relies on cache reuse 
inside atomic sections, we measured the locality of 
memory accesses to demonstrate the opportunity for 
HASTM in these workloads. 
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Figure 13: Ratio of loads and cache reuse  
Figure 13 shows the breakdown of memory operations 

(loads vs. stores) inside critical sections, and the degree of 
cache reuse for the loads; that is, the fraction of loads 
inside critical sections that access a cache line that has 
already been accessed by a prior load inside the same 
critical section. In almost all cases, loads account for 
greater than 70% of the memory operations, and we see a 
reuse greater than 50%. Again, to be conservative we look 
at intra-atomic reuse; in practice, the reuse is higher due to 
inter-atomic reuse. The workload results reinforce the 

                                                             
2 We would like to acknowledge and thank Chi Cao Minh of 

Stanford’s TCC group for helping with this analysis. 

results from the transactional workloads: read barrier and 
read set validation would be the primary STM overhead.  

7.3 HASTM single thread results 

Apart from the basic STM, there are 2 other categories 
of TM implementations that we can compare with: (1) pure 
hardware solutions such as UTM [3], TCC[9], and 
LogTM[24]; and (2) HyTM solutions such as [17][23][29]. 
The pure hardware solutions do not provide all of the 
semantic properties required for language-level 
transactions and entail hardware complexity that may be 
beyond high-volume commercial processors, so we will 
compare only against HyTM approaches. HyTM first tries 
to execute a transaction using HTM, failing which it 
executes the transaction using STM. When executing using 
HTM, the hardware detects conflicts and buffers 
speculative updates. Figure 14 shows the transactional read 
and write barriers under HyTM. 

 
Figure 14: Hybrid code sequences 

The read and write barriers first check that the 
transaction record is shared (hence no conflicting update 
by a software transaction). The write barrier logs the 
transaction record so that it can increment the version 
number on commit to notify any concurrent software 
transaction of the update. The published HyTM 
approaches [17][23][29] all use a similar approach; that is, 
a hardware transaction checks for conflicting accesses by 
concurrent software transactions, and then takes some 
action to notify any concurrent SW transactions of its 
changes. The HyTM execution time shown in the graphs 
below is that of the transaction executing solely as a 
hardware transaction. That is, we use the best case 
performance of HyTM. 

Note that if a program has high cache reuse HASTM 
will be more efficient than HyTM schemes. HyTM always 
needs to check whether a concurrent software transaction 
is conflicting. In HASTM the mark bit lets us avoid the 
check on subsequent accesses.  

We wrote a number of micro benchmarks to emulate 
the memory characteristics of the critical regions in the 
Java/pthreads workloads (in Figure 13). We varied the 
percentage of loads between 60% to 90%, and the load 
cache reuse percentage from 40% to 60%. We kept the 

uint32 HybridRead(uint32* addr) { 
uint32 txnRecValue = *(getTxnRec(addr)); 
if (isShared(txnRecValue)) 
    return (*addr) 
/* contention policy … abort */ 

} 
HybridWrite(uint32* addr, uint32 value) { 
  uint32 txnRecValue = *(getTxnRec(addr)); 
  if (isShared(txnRecValue)) { 
     logWrite(txnRec, txnRecValue); 
     *addr = value; 
  }  
  /* contention policy … abort */ 
}
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store cache reuse constant at 40%. Our HASTM 
performance is mostly insensitive to store reuse since we 
don’t filter write barriers. We then measured the 
performance of simply executing the critical section using 
the different TM implementations. Figure 15 shows the 
performance comparison. The baseline is the 
corresponding STM execution time. 
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Figure 15: TM performance comparison  

At a 60% cache reuse rate, HASTM is as good or 
better (upto 15%) than Hybrid. At a 50% cache reuse rate, 
HASTM is about 5% slower if the critical section contains 
60% loads, but it is as good or better in other cases. At a 
40% cache reuse rate, HASTM is about 10% slower, but 
ends up being 7% faster if loads constitute 90%.  

The Cautious mode denotes a HASTM execution 
when it never transitions into aggressive mode. It 
represents the speedup over a pure STM for transactions 
that would exceed the cache, or survive a context switch, 
etc. At 80% loads, even the Cautious mode gets 
comparable to Hybrid, but at the lowest point (60% loads, 
60% misses) it is about 20% slower. 

Figure 16 shows the single thread performance of 
HASTM on the concurrent data structures. The baseline is 
sequential execution time (i.e., the fastest single thread 
execution time). Note that an ideal unbounded HW TM 
implementation would execute no faster than the 
sequential execution time. 

HASTM performs as well as HyTM on all the 
benchmarks. Moreover, it has a small overhead when 
compared to the sequential execution time, and 
significantly cuts down the STM overhead. The 
improvement is the smallest in the hashtable because of its 
small cache reuse (< 3%). The hashing function spreads 
nodes across buckets, so traversing a single bucket leads to 
poor cache behavior. The improvement is the largest in the 
Btree because of its high cache reuse (68%). The high 
cache reuse arises in part due to the good spatial locality of 
the Btree keys. The BST has a cache reuse of 38%. 
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Figure 16: Relative execution time for TM 

schemes  
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Figure 17: Performance breakdown for HASTM 

HASTM gains from optimizing validation, eliminating 
read-logging, and exploiting cache reuse. Figure 17 shows 
how each part contributes to the performance. (HASTM-
Cautious means HASTM running always in cautious mode 
and hence without read log elimination, HASTM-NoReuse 
means HASTM that does not leverage cache reuse). The 
baseline is sequential execution time. As expected, the 
hashtable benefits mostly from eliminating read logging 
and optimizing validation, rather than from cache reuse, 
while the btree and the BST benefit significantly from 
reuse.  This is borne out by the fact that the cautious mode 
(where HASTM does not eliminate read logging) does not 
show any performance benefit – in fact, the cautious mode 
execution time is longer than the STM. This is interesting 
because the cautious mode actually executes about 5% 
fewer instructions. The cautious mode takes longer 
because: (1) the conditional branch after the loadTestMark 
takes somewhat longer to resolve than ordinary conditional 
branches since it is dependent on the load instruction 
immediately preceding it. (2) the STM code sequences 
(Figure 4) are friendly to out of order execution. Loading 
the transaction record (i1) is independent of the code 
sequence to get the read log pointer (i6), while the final 
code sequence (i11-i13) is completely independent. 
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Therefore, the STM code can compensate for the longer 
code path compared to the cautious mode. 

7.4 HASTM multi-core results 

We show the HASTM performance in a multi-core 
setting in Figure 18-Figure 20. The experiments are set up 
as in the single core case, except that the data structure 
operations are now performed concurrently by multiple 
cores. By its nature, the hashtable benchmark has low 
contention; it does not present new issues in a multi-core 
setting and serves to confirm that a HASTM 
implementation scales well under low contention (Figure 
20). The Btree and the BST exhibit interesting multi-core 
characteristics and show that it is vital for a HW 
accelerated TM implementation to avoid spurious aborts. 

HASTM scales as well as the STM for the BST and 
provides the best performance as we increase the number 
of cores. The locking algorithm for the BST locks the root 
to handle tree rotations; thus the locking approach does not 
scale at all (Figure 18). Both the HASTM and STM 
configurations simply replace the lock acquire and release 
by transaction begin and end; thus the BST results show 
the advantages of transactions over locks. 
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Figure 18: Multi-core scaling for BST 

For the btree, the STM scales somewhat better than 
the HASTM as we increase the number of cores, but the 
HASTM implementation still performs the best. In the 
btree, multiple cores interfere destructively – prefetches 
and speculative accesses from one core kick out marked 
cache lines from another core, and the inclusive nature of 
the cache hierarchy also results in one core accidentally 
kicking out marked cache lines of another core. With 
multiple cores, HASTM encounters more situations where 
it is unable to leverage the HW (mark counter) for 
validation, and falls back on the software validation. As a 
result, the relative performance improvement from 
HASTM drops as we increase the number of cores since 
the performance improvement increasingly relies solely on 
the filtering benefit. 
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Figure 19: Multi-core scaling for Btree 
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Figure 20: Multi-core scaling for hash table 
The importance of avoiding spurious aborts is 

illustrated in Figure 21 and Figure 22. We compare 
HASTM, STM and a naïve TM implementation that 
always tries a transaction first in aggressive mode, and 
then re-executes in cautious mode if the transaction aborts. 
The naïve TM implementation is similar to a HW TM 
implementation with SW fallback (HyTM) – first try the 
transaction in HW and then execute using a STM. In both 
the workloads, the naïve TM implementation scales poorly 
and performs worse than the pure STM at 4 cores. This is 
because the cores interfere destructively in both the 
workloads and abort transactions in aggressive mode due 
to “false conflicts”– accidental eviction of cache lines -- 
causing many re-executions. This does not affect HASTM 
as it starts off in cautious mode and remains in cautious 
mode (where it gets accelerated but does not suffer from 
spurious aborts) till the number of evictions/invalidations 
is below a threshold. As a result, in practice, transactions 
do not get spuriously aborted in HASTM. 

Note that a solution that leveraged HTM for small 
transactions, and relied on STM for large transactions 
would show even worse scaling than the naïve 
implementation. The HW transactions would get aborted 
in the same way as the aggressive mode, while the fallback 
SW transaction would see no acceleration. This shows that 
a robust TM system should be able to apply HW 
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acceleration to transactions which abort only on precise 
conflicts since there may be significant spurious aborts in a 
modern OOO processor, and these spurious aborts are not 
directly related to the transaction size. Moreover, this also 
shows the importance of precise simulation since these 
effects would not be seen otherwise. 
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Figure 21: BST scaling (different TM schemes) 
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Figure 22: Btree scaling (different TM schemes) 

8. Related Work 

The closest related work is hybrid TM 
implementations [17][23][29]. In the hybrid approach, an 
HTM is used to run transactions first, failing which 
transactions are tried using STM. The main difference to 
our approach is that hybrid TM does not accelerate the 
transactions executing in SW, and therefore large 
transactions or semantically rich transactions get no benefit 
from the hardware support. All of these approaches 
involve a more complex hardware scheme than ours, such 
as support for speculative stores, hardware structures to 
guarantee some minimum sized transaction, and changes 
to the coherence protocol. These approaches have also not 
considered language integration issues. 

LogTM [24] and VTM [18] use a software-hardware 
co-designed approach. Neither of them addresses language 
issues such as garbage collection. LogTM also does not 

support transactions of unbounded duration. VTM 
architects semantics into the hardware; for example, 
conflict detection, eager acquire, and so on. We deal with 
semantically rich transactions and do not implement any 
transaction semantics in hardware.  

Our architectural support leverages hardware’s ability 
to detect first use of cache lines efficiently, and to  monitor 
cache lines for remote updates. The ability to detect first 
use of cache lines efficiently is similar to informing 
loads[15]. The monitoring ability has been proposed in 
HTM implementations and other speculative threading 
work[32].  

Herlihy and Moss [14] proposed HTM as a method of 
implementing lock-free data structures, but their HTM had 
size and other restrictions. Subsequently, UTM and LTM 
[3] proposed unbounded transaction support in hardware. 
This requires complex hardware support, and even then, 
LTM only supports transactions that fit in physical 
memory. TCC [9] proposed transactions as a new 
programming paradigm, but their implementation requires 
heavyweight hardware mechanisms including global 
consensus mechanisms. TLR[19] uses speculative lock 
elision and a time-stamping mechanism to provide a 
transactional semantics. Martinez [21] describes a related 
mechanism that identifies a thread guaranteed to win all 
conflicts. 

Our TM implementation is based on the STMs in 
[1][7][12][26]. Shavit and Touitou [28] introduce the term 
STM and present a static STM, which requires advanced 
knowledge of the locations involved in the transaction. 
DSTM [13], FSTM, and ASTM [20] provide dynamic 
object-based STM APIs, which provide transaction 
semantics at the granularity of objects. Compiler support 
for STMs is discussed in [1][12]. None of these 
implementations use any HW support. Composition 
constructs, partial rollback, and language issues are 
discussed in [11]. The HPCS languages [2][6][5] specify 
transactions in lieu of locks for concurrency control. 

9. Conclusions 

This paper presents the first hardware accelerated 
software transactional memory (HASTM) system. We 
propose novel ISA extensions and hardware primitives that 
allow software transactions to filter out unnecessary barrier 
operations. We make novel extensions to a highly 
optimized STM to leverage the ISA extensions. This 
allows transactions to leverage hardware acceleration in all 
cases, for example nested transactions, unbounded 
transactions, transactions surviving a GC, transactions 
using object-based conflict detection, and so on. Finally 
we evaluate our system on a set of transactional workloads 
and compare the performance against other hardware 
supported TM schemes. Our measurements show that 
single-thread HASTM performance is comparable to 
HTM. With multiple threads, HASTM scales as well as 
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STM, and HASTM’s resilience to false aborts allows it to 
scale better than HTM. 
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