
Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation

Chi-Keung Luk Robert Cohn Robert Muth Harish Patil Artur Klauser Geoff Lowney
Steven Wallace Vijay Janapa Reddi y Kim Hazelwood

Intel Corporation yUniversity of Colorado
Website� http���rogue�colorado�edu�Pin� Email� pin�project�intel�com

Abstract
Robust and powerful software instrumentation tools are essential
for program analysis tasks such as profiling, performance evalu-
ation, and bug detection. To meet this need, we have developed
a new instrumentation system called Pin. Our goals are to pro-
vide easy-to-use, portable, transparent, and efficient instrumenta-
tion. Instrumentation tools (called Pintools) are written in C/C++
using Pin’s rich API. Pin follows the model of ATOM, allowing the
tool writer to analyze an application at the instruction level with-
out the need for detailed knowledge of the underlying instruction
set. The API is designed to be architecture independent whenever
possible, making Pintools source compatible across different archi-
tectures. However, a Pintool can access architecture-specific details
when necessary. Instrumentation with Pin is mostly transparent as
the application and Pintool observe the application’s original, unin-
strumented behavior. Pin uses dynamic compilation to instrument
executables while they are running. For efficiency, Pin uses sev-
eral techniques, including inlining, register re-allocation, liveness
analysis, and instruction scheduling to optimize instrumentation.
This fully automated approach delivers significantly better instru-
mentation performance than similar tools. For example, Pin is 3.3x
faster than Valgrind and 2x faster than DynamoRIO for basic-block
counting. To illustrate Pin’s versatility, we describe two Pintools
in daily use to analyze production software. Pin is publicly avail-
able for Linux platforms on four architectures: IA32 (32-bit x86),
EM64T (64-bit x86), Itanium R�, and ARM. In the ten months since
Pin 2 was released in July 2004, there have been over 3000 down-
loads from its website.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging-code inspections and walk-throughs,
debugging aids, tracing; D.3.4 [Programming Languages]: Processors-
compilers, incremental compilers

General Terms Languages, Performance, Experimentation

Keywords Instrumentation, program analysis tools, dynamic com-
pilation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’05 June 12–15,2005,Chicago,Illinois,USA.
Copyright c� 2005 ACM 1-59593-080-9/05/0006 � � � $5.00.

1. Introduction
As software complexity increases, instrumentation—a technique
for inserting extra code into an application to observe its behavior—
is becoming more important. Instrumentation can be performed at
various stages: in the source code, at compile time, post link time,
or at run time. Pin is a software system that performs run-time
binary instrumentation of Linux applications.

The goal of Pin is to provide an instrumentation platform for
building a wide variety of program analysis tools for multiple archi-
tectures. As a result, the design emphasizes ease-of-use, portabil-
ity, transparency, efficiency, and robustness. This paper describes
the design of Pin and shows how it provides these features.

Pin’s instrumentation is easy to use. Its user model is similar
to the popular ATOM [30] API, which allows a tool to insert calls
to instrumentation at arbitrary locations in the executable. Users
do not need to manually inline instructions or save and restore
state. Pin provides a rich API that abstracts away the underlying
instruction set idiosyncrasies, making it possible to write portable
instrumentation tools. The Pin distribution includes many sample
architecture-independent Pintools including profilers, cache simu-
lators, trace analyzers, and memory bug checkers. The API also
allows access to architecture-specific information.

Pin provides efficient instrumentation by using a just-in-time
(JIT) compiler to insert and optimize code. In addition to some
standard techniques for dynamic instrumentation systems includ-
ing code caching and trace linking, Pin implements register re-
allocation, inlining, liveness analysis, and instruction scheduling to
optimize jitted code. This fully automated approach distinguishes
Pin from most other instrumentation tools which require the user’s
assistance to boost performance. For example, Valgrind [22] re-
lies on the tool writer to insert special operations in their in-
termediate representation in order to perform inlining; similarly
DynamoRIO [6] requires the tool writer to manually inline and
save/restore application registers.

Another feature that makes Pin efficient is process attaching
and detaching. Like a debugger, Pin can attach to a process, in-
strument it, collect profiles, and eventually detach. The application
only incurs instrumentation overhead during the period that Pin is
attached. The ability to attach and detach is a necessity for the in-
strumentation of large, long-running applications.

Pin’s JIT-based instrumentation defers code discovery until run
time, allowing Pin to be more robust than systems that use static
instrumentation or code patching. Pin can seamlessly handle mixed
code and data, variable-length instructions, statically unknown in-
direct jump targets, dynamically loaded libraries, and dynamically
generated code.

Pin preserves the original application behavior by providing in-
strumentation transparency. The application observes the same ad-

dresses (both instruction and data) and same values (both register
and memory) as it would in an uninstrumented execution. Trans-
parency makes the information collected by instrumentation more
relevant and is also necessary for correctness. For example, some
applications unintentionally access data beyond the top of stack, so
Pin and the instrumentation do not modify the application stack.

Pin’s first generation, Pin 0, supports Itanium R�. The recently-
released second generation, Pin 2, extends the support to four1

architectures: IA32 (32-bit x86) [14], EM64T (64-bit x86) [15],
Itanium R� [13], and ARM [16]. Pin 2 for Itanium R�is still under
development.

Pin has been gaining popularity both inside and outside of Intel,
with more than 3000 downloads since Pin 2 was first released
in July 2004. This paper presents an in-depth description of Pin,
and is organized as follows. We first give an overview of Pin’s
instrumentation capability in Section 2. We follow by discussing
design and implementation issues in Section 3. We then evaluate in
Section 4 the performance of Pin’s instrumentation and compare it
against other tools. In Section 5, we discuss two sample Pintools
used in practice. Finally, we relate Pin to other work in Section 6
and conclude in Section 7.

2. Instrumentation with Pin
The Pin API makes it possible to observe all the architectural
state of a process, such as the contents of registers, memory, and
control flow. It uses a model similar to ATOM [30], where the user
adds procedures (as known as analysis routines in ATOM’s notion)
to the application process, and writes instrumentation routines to
determine where to place calls to analysis routines. The arguments
to analysis routines can be architectural state or constants. Pin
also provides a limited ability to alter the program behavior by
allowing an analysis routine to overwrite application registers and
application memory.

Instrumentation is performed by a just-in-time (JIT) compiler.
The input to this compiler is not bytecode, however, but a native ex-
ecutable. Pin intercepts the execution of the first instruction of the
executable and generates (“compiles”) new code for the straight-
line code sequence starting at this instruction. It then transfers con-
trol to the generated sequence. The generated code sequence is al-
most identical to the original one, but Pin ensures that it regains
control when a branch exits the sequence. After regaining control,
Pin generates more code for the branch target and continues execu-
tion. Every time the JIT fetches some code, the Pintool has the op-
portunity to instrument it before it is translated for execution. The
translated code and its instrumentation is saved in a code cache for
future execution of the same sequence of instructions to improve
performance.

In Figure 1, we list the code that a user would write to
create a Pintool that prints a trace of address and size for ev-
ery memory write in a program. The main procedure initializes
Pin, registers the procedure called Instruction, and tells Pin
to start execution of the program. The JIT calls Instruction
when inserting new instructions into the code cache, passing
it a handle to the decoded instruction. If the instruction writes
memory, the Pintool inserts a call to RecordMemWrite before
the instruction (specified by the argument IPOINT BEFORE to
INS InsertPredicatedCall), passing the instruction pointer
(specified by IARG INST PTR), effective address for the mem-
ory operation (specified by IARG MEMORYWRITE EA), and number
of bytes written (specified by IARG MEMORYWRITE SIZE). Using

1 Although EM64T is a 64-bit extension of IA32, we classify it as a separate
architecture because of its many new features such as 64-bit addressing, a
flat address space, twice the number of registers, and new software conven-
tions [15].

FILE � trace�

�� Print a memory write record
VOID RecordMemWrite�VOID � ip� VOID � addr� UINT�� size� 	

fprintf�trace�
�p� W �p �dn
� ip� addr� size��
�

�� Called for every instruction
VOID Instruction�INS ins� VOID �v� 	

�� instruments writes using a predicated call�
�� i�e� the call happens iff the store is
�� actually executed
if �INS�IsMemoryWrite�ins��

INS�InsertPredicatedCall�
ins� IPOINT�BEFORE� AFUNPTR�RecordMemWrite��
IARG�INST�PTR� IARG�MEMORYWRITE�EA�
IARG�MEMORYWRITE�SIZE� IARG�END��

�

int main�int argc� char �argv��� 	
PIN�Init�argc� argv��
trace � fopen�
atrace�out
�
w
��
INS�AddInstrumentFunction�Instruction� ���
PIN�StartProgram��� �� Never returns
return ��

�

Figure 1. A Pintool for tracing memory writes.

INS InsertPredicatedCall ensures that RecordMemWrite is
invoked only if the memory instruction is predicated true.

Note that the same source code works on all architectures. The
user does not need to know about the bundling of instructions on
Itanium, the various addressing modes on each architecture, the
different forms of predication supported by Itanium and ARM, x86
string instructions that can write a variable-size memory area, or
x86 instructions like push that can implicitly write memory.

Pin provides a comprehensive API for inspection and instru-
mentation. In this particular example, instrumentation is done one
instruction at a time. It is also possible to inspect whole traces,
procedures, and images when doing instrumentation. The Pin user
manual [12] provides a complete description of the API.

Pin’s call-based model is simpler than other tools where the user
can insert instrumentation by adding and deleting statements in an
intermediate language. However, it is equally powerful in its ability
to observe architectural state and it frees the user from the need to
understand the idiosyncrasies of an instruction set or learn an in-
termediate language. The inserted code may overwrite scratch reg-
isters or condition codes; Pin efficiently saves and restores state
around calls so these side effects do not alter the original applica-
tion behavior. The Pin model makes it possible to write efficient
and architecture-independent instrumentation tools, regardless of
whether the instruction set is RISC, CISC, or VLIW. A combi-
nation of inlining, register re-allocation, and other optimizations
makes Pin’s procedure call-based model as efficient as lower-level
instrumentation models.

3. Design and Implementation
In this section, we begin with a system overview of Pin. We then
discuss how Pin initially gains control of the application, followed
by a detailed description of how Pin dynamically compiles the
application. Finally, we discuss the organization of Pin source code.

3.1 System Overview

Figure 2 illustrates Pin’s software architecture. At the highest level,
Pin consists of a virtual machine (VM), a code cache, and an instru-

JIT Compiler

Emulation Unit D
is

p
a
tc

h
e
r

Virtual Machine (VM)

Code

Cache

Instrumentation APIs

A
p

p
li

c
a

ti
o

n

Operating System

Hardware

Pin

Pintool

Address Space

Figure 2. Pin’s software architecture

mentation API invoked by Pintools. The VM consists of a just-in-
time compiler (JIT), an emulator, and a dispatcher. After Pin gains
control of the application, the VM coordinates its components to
execute the application. The JIT compiles and instruments applica-
tion code, which is then launched by the dispatcher. The compiled
code is stored in the code cache. Entering/leaving the VM from/to
the code cache involves saving and restoring the application register
state. The emulator interprets instructions that cannot be executed
directly. It is used for system calls which require special handling
from the VM. Since Pin sits above the operating system, it can only
capture user-level code.

As Figure 2 shows, there are three binary programs present
when an instrumented program is running: the application, Pin, and
the Pintool. Pin is the engine that jits and instruments the applica-
tion. The Pintool contains the instrumentation and analysis routines
and is linked with a library that allows it to communicate with Pin.
While they share the same address space, they do not share any li-
braries and so there are typically three copies of glibc. By making
all of the libraries private, we avoid unwanted interaction between
Pin, the Pintool, and the application. One example of a problematic
interaction is when the application executes a glibc function that
is not reentrant. If the application starts executing the function and
then tries to execute some code that triggers further compilation, it
will enter the JIT. If the JIT executes the same glibc function, it
will enter the same procedure a second time while the application
is still executing it, causing an error. Since we have separate copies
of glibc for each component, Pin and the application do not share
any data and cannot have a re-entrancy problem. The same prob-
lem can occur when we jit the analysis code in the Pintool that
calls glibc (jitting the analysis routine allows us to greatly reduce
the overhead of simple instrumentation on Itanium).

3.2 Injecting Pin

The injector loads Pin into the address space of an application. In-
jection uses the Unix Ptrace API to obtain control of an application
and capture the processor context. It loads the Pin binary into the
application address space and starts it running. After initializing
itself, Pin loads the Pintool into the address space and starts it run-
ning. The Pintool initializes itself and then requests that Pin start
the application. Pin creates the initial context and starts jitting the
application at the entry point (or at the current PC in the case of
attach). Using Ptrace as the mechanism for injection allows us to
attach to an already running process in the same way as a debug-
ger. It is also possible to detach from an instrumented process and
continue executing the original, uninstrumented code.

Other tools like DynamoRIO [6] rely on the LD PRELOAD en-
vironment variable to force the dynamic loader to load a shared li-
brary in the address space. Pin’s method has three advantages. First,
LD PRELOAD does not work with statically-linked binaries, which
many of our users require. Second, loading an extra shared library
will shift all of the application shared libraries and some dynami-
cally allocated memory to a higher address when compared to an
uninstrumented execution. We attempt to preserve the original be-
havior as much as possible. Third, the instrumentation tool cannot
gain control of the application until after the shared-library loader
has partially executed, while our method is able to instrument the
very first instruction in the program. This capability actually ex-
posed a bug in the Linux shared-library loader, resulting from a
reference to uninitialized data on the stack.

3.3 The JIT Compiler

3.3.1 Basics

Pin compiles from one ISA directly into the same ISA (e.g., IA32
to IA32, ARM to ARM) without going through an intermediate
format, and the compiled code is stored in a software-based code
cache. Only code residing in the code cache is executed—the origi-
nal code is never executed. An application is compiled one trace at
a time. A trace is a straight-line sequence of instructions which ter-
minates at one of the conditions: (i) an unconditional control trans-
fer (branch, call, or return), (ii) a pre-defined number of conditional
control transfers, or (iii) a pre-defined number of instructions have
been fetched in the trace. In addition to the last exit, a trace may
have multiple side-exits (the conditional control transfers). Each
exit initially branches to a stub, which re-directs the control to the
VM. The VM determines the target address (which is statically un-
known for indirect control transfers), generates a new trace for the
target if it has not been generated before, and resumes the execution
at the target trace.

In the rest of this section, we discuss the following features of
our JIT: trace linking, register re-reallocation, and instrumentation
optimization. Our current performance effort is focusing on IA32,
EM64T, and Itanium, which have all these features implemented.
While the ARM version of Pin is fully functional, some of the
optimizations are not yet implemented.

3.3.2 Trace Linking

To improve performance, Pin attempts to branch directly from a
trace exit to the target trace, bypassing the stub and VM. We
call this process trace linking. Linking a direct control transfer
is straightforward as it has a unique target. We simply patch the
branch at the end of one trace to jump to the target trace. However,
an indirect control transfer (a jump, call, or return) has multiple
possible targets and therefore needs some sort of target-prediction
mechanism.

Figure 3(a) illustrates our indirect linking approach as imple-
mented on the x86 architecture. Pin translates the indirect jump
into a move and a direct jump. The move puts the indirect target
address into register �edx (this register as well as the �ecx and
�esi shown in Figure 3(a) are obtained via register re-allocation,
as we will discuss in Section 3.3.3). The direct jump goes to the
first predicted target address �x�������� (which is mapped to
�x�������� in the code cache for this example). We compare
�edx against �x�������� using the lea/jecxz idiom used in Dy-
namoRIO [6], which avoids modifying the conditional flags reg-
ister eflags. If the prediction is correct (i.e. �ecx=0), we will
branch to match� to execute the remaining code of the predicted
target. If the prediction is wrong, we will try another predicted tar-
get �x�������� (mapped to �x�������� in the code cache). If the
target is not found on the chain, we will branch to LookupHtab �,
which searches for the target in a hash table (whose base address is

(a) Chaining of predicted indirect targets

jmp [%eax]

0x40000000

0x70000000

mov [%eax], %edx

jmp $0x70001000 VM

LookupHTab_1

mov %edx, %esi

and $0x3ff, %esi

cmp 0x30898200(, %esi,8), %edx

jnz $VMEntry # miss

jmp 0x30898204(, %esi,8) #hit

lea -0x40001000(%edx), %ecx

jecxz $match1

jmp $0x70002000

…

0x70001000

match1:

lea -0x40002000(%edx), %ecx

jecxz $match2

jmp $LookupHTab_1

…

0x70002000

match2:

(b) Using cloning to help predict return targets

call F()

ret

F():

call F()

pop %edx

jmp A’

F’():

lea –A(%edx), %ecx

jecxz $match1

jmp B’

…

A’:

pop %edx

jmp A’

F_A’():

pop %edx

jmp B’

F_B’():

ret translated without cloning ret translated with cloning

A: B:

lea –B(%edx), %ecx

jecxz $match2

jmp $LookupHtab_1
…

B’:

lea –A(%edx), %ecx

jecxz $match1

jmp $LookupHtab_1

…

A’:

lea –B(%edx), %ecx

jecxz $match2

jmp $LookupHtab_2

…

B’:

Figure 3. Compiling indirect jumps and returns

�x���	���� in this example). If the search succeeds, we will jump
to the translated address corresponding to the target. If the search
fails, we will transfer to the VM for indirect target resolution.

While our indirect linking mechanism is similar to the approach
taken in DynamoRIO [6], there are three important differences.
First, in DynamoRIO, the entire chain is generated at one time
and embedded at the translation of the indirect jump. Therefore
no new predicted target can be added onto the chain after it is
generated. In contrast, our approach incrementally builds the chain
while the program is running and thus we can insert newly seen
targets onto the chain in any order (e.g., Pin can put a new target
either at the front or the end of the chain). These new targets
can be found in the chain the next time that they occur, without
searching the hash table. The second difference is that DynamoRIO
uses a global hash table for all indirect jumps whereas Pin uses
a local hash table for each individual indirect jump. A study by
Kim and Smith [17] shows that the local hash table approach
typically offers higher performance. The third difference is that we
apply function cloning [10] to accelerate the most common form
of indirect control transfers: returns. If a function is called from
multiple sites, we clone multiple copies of the function, one for
each call site. Consequently, a return in each clone will have only
one predicted target on the chain in most cases, as illustrated by
the example in Figure 3(b). To implement cloning, we associate a
call stack with each trace (more precisely to the static context of

each trace, which we will discuss in Section 3.3.3). Each call stack
remembers the last four call sites and is compactly represented by
hashing the call-site addresses into a single 64-bit integer.

3.3.3 Register Re-allocation

During jitting, we frequently need extra registers. For example, the
code for resolving indirect branches in Figure 3(a) needs three free
registers. When instrumentation inserts a call into an application,
the JIT must ensure that the call does not overwrite any scratch reg-
isters that may be in use by the application. Rather than obtaining
extra registers in an ad-hoc way, Pin re-allocates registers used in
both the application and the Pintool, using linear-scan register allo-
cation [24]. Pin’s allocator is unique in that it does interprocedural
allocation, but must compile one trace at a time while incremen-
tally discovering the flow graph during execution. In contrast, static
compilers can compile one file at a time and bytecode JITs [5, 8]
can compile a whole method at one time. We describe two issues
that our trace-based register re-allocation scheme must address:
register liveness analysis and reconciliation of register bindings.

Register Liveness Analysis Precise liveness information of
registers at trace exits makes register allocation more effective since
dead registers can be reused by Pin without introducing spills.
Without a complete flow graph, we must incrementally compute
liveness. After a trace at address A is compiled, we record the
liveness at the beginning of the trace in a hash table using address
A as the key. If a trace exit has a statically-known target, we
attempt to retrieve the liveness information from the hash table so
we can compute more precise liveness for the current trace. This
simple method introduces negligible space and time overhead, yet
is effective in reducing register spills introduced by Pin’s register
allocation.

Reconciliation of Register Bindings Trace linking (see Sec-
tion 3.3.2) tries to make traces branch directly to each other. When
registers are reallocated, the JIT must ensure than the register bind-
ing at the trace exit of the source trace matches the bindings of the
entrance of the destination trace. A straightforward method is to re-
quire a standard binding of registers between traces. For example
Valgrind [22] requires that all virtual register values be flushed to
memory at the end of a basic block. This approach is simple but
inefficient. Figure 4(b) shows how Valgrind would re-allocate reg-
isters for the original code shown in Figure 4(a). Here, we assume
that virtual �ebx is bound to physical �esi in Trace 1 but to phys-
ical �edi in Trace 2. Virtual �eax and �ebx are saved at Trace
1’s exit because they have been modified in the trace, and they are
reloaded before their uses in Trace 2. EAX and EBX are the mem-
ory locations allocated by the JIT for holding the current values of
virtual �eax and �ebx, respectively.

In contrast, Pin keeps a virtual register in the same physical
register across traces whenever possible. At a trace exit e, if the
target t has not been compiled before, our JIT will compile a new
trace for t using the virtual-to-physical register binding at e, say
Be. Therefore, e can branch directly to t. Figure 4(c) shows how
Pin would re-allocate registers for the same original code, assuming
that target t has not been compiled before. Nevertheless, if target t
has been previously compiled with a register binding Bt �� Be,
then our JIT will generate compensation code [19] to reconcile the
register binding from Be to Bt instead of compiling a new trace for
Be. Figure 4(d) shows how Pin would re-allocate registers for the
same original code, this time assuming that the target t has been
previously compiled with a different binding in the virtual �ebx. In
practice, these bindings show differences in only one or two virtual
registers, and are therefore more efficient than Valgrind’s method.

A design choice we encountered was where to put the compen-
sation code. It could be placed before the branch, which is exactly
the situation shown in Figure 4(d) where the two mov instructions

(a) Original code (b) Valgrind’s approach

mov $1, %eax

mov $2, %ebx

cmp %ecx, %edx

jz t

add $1, %eax

sub $2, %ebx

t:
t’:

mov $1, %eax

mov $2, %esi

cmp %ecx, %edx

mov %eax, EAX

mov %esi, EBX

jz t’

mov EAX, %eax

mov EBX, %edi

add $1, %eax

sub $2, %edi

Trace 1

Trace 2

(c) Pin (no reconciliation needed)

mov $1, %eax

mov $2, %esi

cmp %ecx, %edx

jz t’

Trace 1

t’: add $1, %eax

sub $2, %esi

Trace 2

Compile Trace 2 using the bindings:

%edx%edx

%ecx%ecx

%esi%ebx

%eax%eax

PhysicalVirtual

(d) Pin (minimal reconciliation needed)

mov $1, %eax

mov $2, %esi

cmp %ecx, %edx

mov %esi, EBX

mov EBX, %edi

jz t’

Trace 1 (being compiled)

t’: add $1, %eax

sub $2, %edi

Trace 2 (previously compiled)

No need to recompile
Trace 2, simply reconcile
the bindings of virtual
%ebx in Traces 1 and 2

Figure 4. Reconciliation of Register Bindings

that adjust the binding are placed before the jz. Or the compensa-
tion code could be placed after the branch (in that case, the two mov
instructions in Figure 4(d) would be placed in between the jz and
t�). We chose the ”before” approach because our experimental data
showed that it generally resulted in fewer unique bindings, there-
fore reducing the memory consumed by the compiler. Placing the
compensation code before the branch is equivalent to targeting the
register allocation to match the binding at the branch target.

To support reconciliation of register bindings, we need to re-
member the binding at a trace’s entry. This is done by associat-
ing each trace with a static context (sct), which contains a group
of static properties that hold at the trace’s entry. Register bind-
ing is one such property; another example property is the call
stack of the trace, which is used for function cloning (see Sec-
tion 3.3.2). So, precisely speaking, a trace is defined as a pair
� entryIaddr� entrySct �, where entryIaddr is the original
instruction address of the trace’s entry and entrySct is the static
context of the trace. Before the JIT compiles a new trace, it will first
search for a compatible trace in the code cache. Two traces are com-

patible if they have the same entryIaddr and their entrySct’s are
either identical or different in only their register bindings (in that
case we can reconcile from one register binding to the other, as we
have exemplified in Figure 4(d)). If a compatible trace is found, the
JIT will simply use it instead of generating a new trace.

3.3.4 Thread-local Register Spilling

Pin reserves an area in memory for spilling virtual registers (e.g.,
EAX and EBX shown in Figure 4(b) are two locations in this spilling
area). To support multithreading, this area has to be thread local.
When Pin starts an application thread, it allocates the spilling area
for this thread and steals a physical register (�ebx on x86, �r� on
Itanium) to be the spill pointer, which points to the base of this
area. From that point on, any access to the spilling area can be
made through the spill pointer. When we switch threads, the spill
pointer will be set to the spilling area of the new thread. In addition,
we exploit an optimization opportunity coming from the absolute
addressing mode available on the x86 architecture. Pin starts an ap-
plication assuming that it is single threaded. Accesses to the spilling
area are made through absolute addressing and therefore Pin does
not need a physical register for the spill pointer. If Pin later discov-
ers that the application is in fact multithreaded, it will invalidate the
code cache and recompile the application using the spill pointer to
access the spilling area (Pin can detect multithreading because it
intercepts all thread-create system calls). Since single-threaded ap-
plications are more common than multithreaded ones, this hybrid
approach works well in practice.

3.3.5 Optimizing Instrumentation Performance

As we will show in Section 4, most of the slowdown from instru-
mentation is caused by executing the instrumentation code, rather
than the compilation time (which includes inserting the instrumen-
tation code). Therefore, it is beneficial to spend more compilation
time in optimizing calls to analysis routines. Of course, the run-
time overhead of executing analysis routines highly depends on
their invocation frequency and their complexity. If analysis rou-
tines are complex, there is not much optimization that our JIT can
do. However, there are many Pintools whose frequently-executed
analysis routines perform only simple tasks like counting and trac-
ing. Our JIT optimizes those cases by inlining the analysis rou-
tines, which reduces execution overhead as follows. Without inlin-
ing, we call a bridge routine that saves all caller-saved registers,
sets up analysis routine arguments, and finally calls the analysis
routine. Each analysis routine requires two calls and two returns
for each invocation. With inlining, we eliminate the bridge and thus
save those two calls and returns. Also, we no longer explicitly save
caller-saved registers. Instead, we rename the caller-saved registers
in the inlined body of the analysis routine and allow the register al-
locator to manage the spilling. Furthermore, inlining enables other
optimizations like constant folding of analysis routine arguments.

We perform an additional optimization for the x86 architecture.
Most analysis routines modify the conditional flags register eflags
(e.g., if an analysis routine increments a counter). Hence, we must
preserve the original eflags value as seen by the application.
However, accessing the eflags is fairly expensive because it must
be done by pushing it onto the stack2. Moreover, we must switch to
another stack before pushing/popping the eflags to avoid chang-
ing the application stack. Pin avoids saving/restoring eflags as
much as possible by using liveness analysis on the eflags. The
liveness analysis tracks the individual bits in the eflags written
and read by each x86 instruction. We frequently discover that the

2 On IA32, we can use lahf/sahf to access the eflags without involving
the stack. However, we decided not to use them since these two instructions
are not implemented on current EM64T processors.

Architecture Number of Number of Lines
Source Files (including comments)

Generic 87 (48%) 53595 (47%)
x86 34 (19%) 22794 (20%)

(IA32+EM64T)
Itanium 34 (19%) 20474 (18%)
ARM 27 (14%) 17933 (15%)

TOTAL 182 (100%) 114796 (100%)

Table 1. Distribution of Pin source among different architectures
running Linux. Over 99% of code is written in C++ and the remain-
ing is in assembly.

eflags are dead at the point where an analysis routine call is in-
serted, and are able to eliminate saving and restoring of the eflags.

Finally, to achieve even better performance, the Pintool writer
can specify a hint (IPOINT ANYWHERE) telling Pin that a call to
an analysis routine can be inserted anywhere inside the scope of
instrumentation (e.g., a basic block or a trace). Then Pin can exploit
a number of optimization opportunities by scheduling the call. For
instance, Pin can insert the call immediately before an instruction
that overwrites a register (or eflags) and thereby the analysis
routine can use that register (or eflags) without first spilling it.

3.4 Organization of Pin Source Code

Since Pin is a multi-platform system, source code sharing is a
key to minimizing the development effort. Our first step was to
share the basic data structures and intermediate representations
with Ispike [20], a static binary optimizer we previously developed.
Then we organized Pin source into generic, architecture dependent,
or operating-system dependent modules. Some components like the
code cache are purely generic, while other components like the
register allocator contain both generic and architecture-dependent
parts. Table 1 shows the distribution of Pin source among different
architectures, in terms of number of source files and lines. We
combine IA32 and EM64T in Table 1 since they are similar enough
to share the same source files. The x86 numbers do not include
the decoder/encoder while the Itanium numbers do not include
the instruction scheduler. The reason is that we borrow these two
components from other Intel tools in library form and we do not
have their sources. The data reflects that we have done a reasonable
job in code sharing among architectures as about 50% of code is
generic.

4. Experimental Evaluation
In this section, we first report the performance of Pin without any
instrumentation on the four supported architectures. We then report
the performance of Pin with a standard instrumentation—basic-
block counting. Finally, we compare the performance of Pin with
two other tools: DynamoRIO and Valgrind, and show that Pin’s
instrumentation performance is superior across our benchmarks.

Our experimental setup is described in Table 2. For IA32, we
use dynamically-linked SPECint binaries compiled with gcc
O�.
We compiled eon with icc because the gcc
O� version does not
work, even without applying Pin. We could not use the official
statically-linked, icc-generated binaries for all programs because
DynamoRIO cannot execute them. We ran the SPEC2000 suite [11]
using reference inputs on IA32, EM64T, and Itanium. On ARM,
we are only able to run the training inputs due to limited physical
memory (128MB), even when executing uninstrumented binaries.
Floating-point benchmarks are not used on ARM as it does not have
floating-point hardware.

Staticicc 8.0 for SPECfp

Intel ® compiler (icc
8.0), with
interprocedural &
profile-guided
optimizations

Static

Static

Static

Shared

Binary

gcc 3.4.1, -O22.4.18
400 MHz XScale®

80200, 128 MB Memory
ARM

2.4.18
1.3GHz Itanium®2, 6MB

L2 cache, 12GB Memory
Itanium®

2.4.21
3.4GHz Xeon™, 1MB L2
cache, 4GB Memory

EM64T

gcc 3.3.2, -O3 for
SPECint (except in
eon where we use
icc)

2.4.9
1.7GHz Xeon™, 256KB
L2 cache, 2GB Memory

IA32

CompilerLinuxHardware

Table 2. Experimental setup.

4.1 Pin Performance without Instrumentation

Figure 5 shows the performance of applying Pin to the bench-
marks on the four architectures, without any instrumentation. Since
Pin 2/Itanium is still under development, we instead use Pin 0 for
Itanium experiments. The y-axis is the time normalized to the na-
tive run time (i.e. 100%). The slowdown of Pin 2 on IA32 and
EM64T is similar. In both cases, the average run-time overhead is
around 60% for integer and within 5% for floating point. The higher
overhead on the integer side is due to many more indirect branches
and returns. The slowdown of Pin 0 on Itanium follows the same
trend but is generally larger than on IA32 and EM64T, especially
for floating-point benchmarks. This is probably because Itanium is
an in-order architecture, so its performance depends more on the
quality of the jitted code. In contrast, IA32 and EM64T are out-
of-order architectures that can tolerate the overhead introduced in
the jitted code. Pin’s performance on ARM is worse than the other
three architectures because indirect linking (see Section 3.3.2) is
not yet implemented and there are fewer computational resources
(ILP and memory) available.

One downside of dynamic compilation is that the compilation
time is directly reflected in the application’s run time. To under-
stand the performance impact of dynamic compilation, we divide
the total run time into the components shown in Figures 5(a), (b),
and (d) (Pin 0 source code is not instrumented and hence does not
have the breakdown). Code Cache denotes the time executing the
jitted code stored in the code cache. Ideally, we would like this
component to approach 100%. We divide the JIT time into three
categories: JIT-Decode, JIT-Regalloc, and JIT-Other. JIT-Decode is
the time spent decoding and encoding instructions, which is a non-
trivial task on the x86 architecture. JIT-Regalloc is the time spent in
register re-allocation. JIT-Other denotes the remaining time spent
in the JIT. The last component is VM, which includes all other time
spent in the virtual machine, including instruction emulation and
resolving mispredicted indirect control transfers.

As Figures 5 (a) and (b) show, the JIT and VM components on
IA32 and EM64T are mostly small except in gcc and perlbmk.
These two benchmarks have the largest instruction footprint in
SPEC2000 and their execution times are relatively short. Conse-
quently, there is insufficient code reuse for Pin to amortize its com-
pilation cost. In particular, Pin pays a high cost in re-allocating reg-
isters compared to most other tools that do not re-allocate registers.
Nevertheless, the advantages provided by register re-allocation out-
weigh its compilation overhead (e.g., register re-allocation makes
it easy to provide Pin and Pintools more virtual registers than the
number of physical registers supported by the hardware). In prac-
tice, the performance overhead is a serious concern only for long-
running applications. In that case, we would have sufficient code
reuse to amortize the cost of register re-allocation. Figure 5(d)
shows a different trend for ARM, where the VM component is

(a) Pin 2/IA32

10
8 18

2

15
6

12
2

29
9

11
1

10
1

11
5

23
7

11
4

19
8

10
9

10
1

10
0

10
2

10
1

10
4

10
3

12
1

10
3

10
1

10
6

10
1

10
4

10
0

11
1

105
154

0
50

100
150
200
250
300
350
400

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

IN
T-A

rtM
ea

n

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

FP-A
riM

ea
n

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

(%
)

Code Cache JIT-Decode JIT-Regalloc JIT-Other

VM Total

(b) Pin 2/EM64T

10
5 15

9

14
4

14
8

37
6

10
7

10
0

11
2

29
6

11
1

18
3

11
0

10
1

10
1

10
3

10
1

10
2

10
4

11
1

10
4

10
1

10
5

10
1

10
3

10
1

10
6

104

163

0
50

100
150
200
250
300
350
400

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

IN
T-A

riM
ea

n

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

FP-A
riM

ea
n

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

(%
)

Code Cache JIT-Decode JIT-Regalloc JIT-Other
VM Total

(c) Pin 0/Itanium (d) Pin 2/ARM

12
2 17

3

13
3

21
0 26

0

12
0

10
5 12

5

35
7

12
5 14
2

12
6

11
4

10
9 12

8

12
5

11
3 13

5

99

11
7

10
0 14

2

10
4 13

2

11
2

11
5 119

167

0

50

100

150

200

250

300

350

400

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k
tw

olf

vo
rte

x
vp

r

IN
T-A

riM
ea

n

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as
m

es
a
m

gr
id

six
tra

ck
sw

im

wup
wise

FP-A
riM

ea
n

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

(%
)

Total

186

683

124

1015

592

267 273

682

284

826
762

117

484

0

200

400

600

800

1000

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er
tw

ol
f

pe
rlb

m
k

vo
rte

x
vp

r

IN
T-A

riM
ea

nN
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

 (
%

)

Code Cache JIT-Decode JIT-Regalloc JIT-Other

VM Total

Figure 5. Performance of Pin (without any instrumentation) on four architectures. The y-axis is the time normalized to the native run time
(i.e. 100%). INT-AriMean and FP-AriMean on the x-axis are the arithmetic means of the integer and floating-point benchmarks, respectively.
The legends are explained in Section 4.1.

large but all JIT components are small. This is because register re-
allocation and indirect linking are not yet implemented on ARM.
As a result, all indirect control transfers are resolved by the VM.

4.2 Pin Performance with Instrumentation

We now study the performance of Pin with basic-block counting,
which outputs the execution count of every basic block in the ap-
plication. We chose to measure this tool’s performance because
basic-block counting is commonly used and can be extended to
many other tools such as Opcodemix, which we will discuss in
Section 5.1. Also, this tool is simple enough that its performance

largely depends on how well the JIT integrates it into the applica-
tion. On the other hand, performance of a complex tool like de-
tailed cache simulation mostly depends on the tool’s algorithm. In
that case, our JIT has less of an impact on performance.

Figure 6 shows the performance of basic-block counting using
Pin on the IA32 architecture. Each benchmark is tested using four
different optimization levels. Without any optimization, the over-
head is fairly large (as much as 20x slowdown in crafty). Adding
inlining helps significantly; the average slowdown improves from
10.4x to 7.8x for integer and from 3.9x to 3.5x for floating point.
The biggest performance boost comes from the eflags liveness

23
6 34

3

21
4

25
9 41

2

18
9

10
8 17
9

45
0

13
4 28

9

16
2

11
8

12
1

11
4

11
0

15
2

12
7

14
4

10
9

11
0

14
9

10
5

11
0

10
4 31

7

13
824

8

0

500

1000

1500

2000

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

IN
T-A

riM
ea

n

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

FP-A
riM

ea
nN

o
rm

al
iz

ed
E

xe
cu

ti
o

n
T

im
e

(%
) Without optimization

Inlining
Inlining + eflags liveness analysis
Inlining + eflags liveness analysis + scheduling

Figure 6. Performance of Pin with basic-block counting instrumentation on the IA32 architecture.

analysis, reducing the average slowdown to 2.8x for integer and
1.5x for floating point. Scheduling of instrumentation code further
reduces the slowdown to 2.5x for integer and 1.4x for floating point.

4.3 Performance Comparison with Valgrind and
DynamoRIO

We now compare the performance of Pin against Valgrind and Dy-
namoRIO. Valgrind is a popular instrumentation tool on Linux and
is the only binary-level JIT other than Pin that re-allocates regis-
ters. DynamoRIO is generally regarded as the performance leader
in binary-level dynamic optimization. We used the latest release of
each tool for this experiment: Valgrind 2.2.0 [22] and DynamoRIO
0.9.3 [6]. We ran two sets of experiments: one without instrumenta-
tion and one with basic-block counting instrumentation. We imple-
mented basic-block counting by modifying a tool in the Valgrind
package named lackey and a tool in the DynamoRIO package
named countcalls. We show only the integer results in Figure 7
as integer codes are more problematic than floating-point codes in
terms of the slowdown caused by instrumentation.

Figure 7(a) shows that without instrumentation both Pin and
DynamoRIO significantly outperform Valgrind. DynamoRIO is
faster than Pin on gcc, perlbmk and vortex, mainly because Pin
spends more jitting time in these three benchmarks (refer back to
Figure 5(a) for the breakdown) than DynamoRIO, which does not
re-allocate registers. Pin is faster than DynamoRIO on a few bench-
marks such as crafty and gap possibly because of the advantages
that Pin has in indirect linking (i.e. incremental linking, cloning,
and local hash tables). Overall, DynamoRIO is 12% faster than
Pin without instrumentation. Given that DynamoRIO was primar-
ily designed for optimization, the fact that Pin can come this close
is quite acceptable.

When we consider the performance with instrumentation shown
in Figure 7(b), Pin outperforms both DynamoRIO and Valgrind
by a significant margin: on average, Valgrind slows the applica-
tion down by 8.3 times, DynamoRIO by 5.1 times, and Pin by 2.5
times. Valgrind inserts a call before every basic block’s entry but
it does not automatically inline the call. For DynamoRIO, we use
its low-level API to update the counter inline. Nevertheless, Dy-
namoRIO still has to save and restore the eflags explicitly around
each counter update. In contrast, Pin automatically inlines the call
and performs liveness analysis to eliminate unnecessary eflags
save/restore. This clearly demonstrates a main advantage of Pin: it
provides efficient instrumentation without shifting the burden to the
Pintool writer.

(a) Without instrumentation

4
3

3

7
4

7

5
8

7

1
1

8
8

7
3

9

1
6

8

4
1

4

8
4

7

3
0

2

5
6

8

8
5

5

6
2

3

1
0

5

2
1

3

1
3

8

1
7

8

1
0

9

1
0

1

1
2

1 2
0

3

1
1

3 1
7

3

1
0

5

1
4

2

1
0

8 1
8

2

2
9

9

1
1

1

1
0

1

1
1

5

2
3

7

1
1

4 1
9

8

1
0

9 1
5

4

1
2

2

0

200

400

600

800

1000

1200

bz
ip
2

cr
af

ty
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

IN
T-A

riM
ea

n

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

 (
%

)

Valgrind DynamoRIO Pin/IA32

(b) With basic-block counting

58
2

10
91

86
0

15
83

93
4

19
1

57
4

12
20

39
1

81
7 93

6

83
4

47
9 61

7

60
6

63
3 71

8

15
8

48
0

79
3

26
9

52
0

32
0

50
8

23
6 34

3

25
9

41
2

18
9

10
8 17

9

45
0

13
4

28
9

16
2 25

1

0

200

400

600

800

1000

1200

1400

1600

bz
ip2

cr
af

ty
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

IN
T-A

riM
ea

n

N
o

rm
al

iz
ed

E
xe

cu
ti

o
n

T
im

e
(%

)

Valgrind DynamoRIO Pin/IA32

Figure 7. Performance comparison among Valgrind, DynamoRIO,
and Pin. Eon is excluded because DynamoRIO does not work on
the icc-generated binary of this benchmark. Omitting eon causes
the two arithmetic means of Pin/IA32 slightly different than the
ones shown in Figures 5(a) and 6.

5. Two Sample PinTools
To illustrate how Pin is used in practice, we discuss two Pintools
that have been used by various groups inside Intel. The first tool,
Opcodemix, studies the frequency of different instruction types in a
program. It is used to compare codes generated by different compil-
ers. The second tool, PinPoints, automatically selects representa-
tive points in the execution of a program and is used to accelerate
processor simulation.

5.1 Opcodemix

Opcodemix, whose source code is included in the Pin 2 distribu-
tion [12], is a simple Pintool that can determine the dynamic mix
of opcodes for a particular execution of a program. The statistics
can be broken down on a per basic-block, per routine, or per image
basis. Conceptually this tool is implemented as a basic-block pro-
filer. We insert a counter at the beginning of each basic block in a
trace. Upon program termination we walk through all the counters.
From the associated basic-block’s starting address, we can deter-
mine the function it belongs to and the instruction mix in that basic
block. While the output of Opcodemix is ISA dependent (different
ISAs have different opcodes), the implementation is generic—the
same source code for Opcodemix is used on the four architectures.

Though simple, Opcodemix has been quite useful both for ar-
chitectural and compiler comparison studies. As an example, the
following analysis revealed a compiler performance problem. We
collected Opcodemix statistics for the SPEC2000 images produced
by two compilers, which we refer to as compilers A and B, for the
EM64T architecture. For the benchmark crafty, we found that
the image produced by compiler A executed 2% more dynamic in-
structions than the image produced by compiler B. To understand
the cause of the extra instructions, we looked at the instruction dis-
tribution of frequently-executed routines. The data for the routine
PopCnt�� is shown in Table 3, where opcodes with significantly
different frequencies in the two compilers are marked with “�”.
Examining the PopCnt�� codes from the two compilers revealed
that the deltas in JE and JNZ were due to different code-layout deci-
sions, and the delta in MOVL was due to different register selections.
The most surprising finding was the extra PUSHQ and POPQ gener-
ated by compiler A. Figure 8 shows the PopCnt�� code generated
by compiler A. After communicating with compiler A’s writers, we
learned that the push and pop are used for stack alignment but are
in fact unnecessary in this case. As a result, this performance prob-
lem is now fixed in the latest version of compiler A.

In addition to SPEC, we use Opcodemix to analyze the Oracle
database performance. Typically, more than 10 “Oracle” processes
run on the system, but we want to ignore the database startup
and only observe a single process performing a transaction. We
first run Oracle natively (i.e. without Pin) to startup the database.
Next we attach Pin to a single database server process and have
it perform a transaction while collecting a profile. Pin’s dynamic
just-in-time instrumentation allows us to avoid instrumenting the
entire 60 MB Oracle binary, and the attach feature allows us to
avoid instrumenting the database startup and the other processes.

5.2 PinPoints

The purpose of the PinPoints [23] toolkit is to automate the oth-
erwise tedious process of finding regions of programs to simulate,
validating that the regions are representative, and generating traces
for those regions. There are two major challenges in simulating
large commercial programs. First, these programs have long run
times, and detailed simulation of their entire execution is too time
consuming to be practical. Second, these programs often have large
resource requirements, operating system and device-driver depen-
dencies, and elaborate license-checking mechanisms, making it dif-
ficult to execute them on simulators. We address the first chal-

��
Instruction Type C o u n t

Compiler A Compiler B Delta
��
�total ���M ���M ���M
XORL ��M ��M �M
TESTQ ��M ��M �M
RET ��M ��M �M
PUSHQ ��M �M ���M ��
POPQ ��M �M ���M ��
JE ��M �M ���M ��
LEAQ ��M ��M �M
JNZ ��M ���M ��M ��
ANDQ ��M ��M �M
ADDL ��M ��M �M
MOVL �M ��M ��M ��

Table 3. Dynamic instruction distribution in PopCnt�� of crafty
benchmark.

��f��� �PopCnt��
��f���� push �rsi � unnecessary
��f���� xor �eax��eax
��f��b� test �rdi��rdi
��f��e� je ��f��c
��f���� add �x���eax
��f���� lea �xffffffffffffffff��rdi���rdx
��f���� and �rdx��rdi
��f��a� jne ��f���
��f��c� pop �rcx � unnecessary
��f��d� retq

Figure 8. PopCnt�� code generated by compiler A.

lenge using SimPoint [28]—a methodology that uses phase anal-
ysis for finding representative regions for simulation. For the sec-
ond challenge, we use Pin to collect SimPoint profiles (which we
call PinPoints) and instruction traces, eliminating the need to ex-
ecute the program on a simulator. The ease of running applica-
tions with Pintools is a key advantage of the PinPoints toolkit.
PinPoints has been used to collect instruction traces for a wide
variety of programs; Table 4 lists some of the Itanium applications
(SPEC and commercial), including both single-threaded and multi-
threaded applications. As the table shows, some of the commercial
applications are an order of magnitude larger and longer-running
than SPEC, and fully simulating them would take years. Simulating
only the selected PinPoints reduces the simulation time from years
to days. We also validate that the regions chosen represent whole-
program behavior (e.g., the cycles-per-instruction predicted by Pin-
Points is typically within 10% of the actual value [23]). Because of
its high prediction accuracy, fast simulation time, and ease-of-use,
PinPoints is now used to predict performance of large applications
on future Intel processors.

6. Related Work
There is a large body of related work in the areas of instrumentation
and dynamic compilation. To limit our scope of discussion, we con-
centrate on binary instrumentation in this section. At the highest
level, instrumentation consists of static and dynamic approaches.

Static binary instrumentation was pioneered by ATOM [30],
followed by others such as EEL [18], Etch [25], and Morph [31].
Static instrumentation has many limitations compared to dynamic
instrumentation. The most serious one is that it is possible to mix
code and data in an executable and a static tool may not have
enough information to distinguish the two. Dynamic tools can rely
on execution to discover all the code at run time. Other difficult

Program Description Code Dynamic
Size Count

(MB) (billions)
SPECINT SPEC CPU2000 integer 1.9 521
2000 suite [11] (avg.)
SPECFP SPEC CPU2000 floating 2.4 724
2000 -point suite [11] (avg.)
SPECOMP SPEC benchmarks 8.4 4800
2001 for evaluating

multithreaded
OpenMP applications [26]

Amber A suite of bio-molecular 6.2 3994
simulation from UCSF [1]

Fluent Computational Fluid 19.6 25406
Dynamics code from
Fluent Inc [2]

LsDyna A general-purpose transient 61.9 4932
dynamic finite element analy-
sis program from Livermore
Software Technology [3]

RenderMan A photo-realistic rendering 8.5 797
application from Pixar [4]

Table 4. Applications analyzed with PinPoints. Column 3 shows
the code section size of the application binary and shared libraries
reported by the size command. Column 4 lists the dynamic in-
struction count for the longest-running application input.

problems for static systems are indirect branches, shared libraries,
and dynamically-generated code.

There are two approaches to dynamic instrumentation: probe-
based and jit-based. The probe-based approach works by dynam-
ically replacing instructions in the original program with trampo-
lines that branch to the instrumentation code. Example probe-based
systems include Dyninst [7], Vulcan [29], and DTrace [9]. The
drawbacks of probe-based systems are that (i) instrumentation is
not transparent because original instructions in memory are over-
written by trampolines, (ii) on architectures where instruction sizes
vary (i.e. x86), we cannot replace an instruction by a trampoline
that occupies more bytes than the instruction itself because it will
overwrite the following instruction, and (iii) trampolines are im-
plemented by one or more levels of branches, which can incur
a significant performance overhead. These drawbacks make fine-
grained instrumentation challenging on probe-based systems. In
contrast, the jit-based approach is more suitable for fine-grained in-
strumentation as it works by dynamically compiling the binary and
can insert instrumentation code (or calls to it) anywhere in the bi-
nary. Examples include Valgrind [22], Strata [27], DynamoRIO [6],
Diota [21], and Pin itself. Among these systems, Pin is unique in the
way that it supports high-level, easy-to-use instrumentation, which
at the same time is portable across four architectures and is efficient
due to optimizations applied by our JIT.

7. Conclusions
We have presented Pin, a system that provides easy-to-use, portable,
transparent, efficient, and robust instrumentation. It supports the
IA32, EM64T, Itanium R�, and ARM architectures running Linux.
We show that by abstracting away architecture-specific details,
many Pintools can work across the four architectures with little
porting effort. We also show that the Pin’s high-level, call-based
instrumentation API does not compromise performance. Auto-
matic optimizations done by our JIT compiler make Pin’s instru-
mentation even more efficient than other tools that use low-level
APIs. We also demonstrate the versatility of Pin with two Pin-
tools, Opcodemix and PinPoints. Future work includes develop-
ing novel Pintools, enriching and refining the instrumentation API
as more tools are developed, and porting Pin to other operating sys-
tems. Pin is freely available at http��rogue�colorado�edu�Pin.

Acknowledgments
We thank Prof. Dan Connors for hosting the Pin website at Uni-
versity of Colorado. The Intel Bistro team provided the x86 de-
coder/encoder and suggested the instruction scheduling optimiza-
tion. Ramesh Peri implemented part of the Pin 2/Itanium instru-
mentation.

References
[1] AMBER home page. http://amber.scripps.edu/.
[2] Fluent home page. http://www.fluent.com/.
[3] LS-DYNA home page. http://www.lstc.com/.
[4] RenderMan home page. http://RenderMan.pixar.com/.
[5] A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y. Chen, A. Ghuloum,

V. Menon, B. Murphy, M. Serrano, and T. Shpeisman. The StarJIT
compiler: A dynamic compiler for managed runtime environments.
Intel Technology Journal, 7(1):19–31, Feb 2003.

[6] D. L. Bruening. Efficient, Transparent, and Comprehensive Runtime
Code Manipulation. PhD thesis, M.I.T. (http://www.cag.lcs.mit.edu/dynamorio/),
September 2004.

[7] B. R. Buck and J. Hollingsworth. An api for runtime code patching.
Journal of High Performance Computing Applications, 14(4):317–
329, 2000.

[8] M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar,
M. J. Serrano, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapeno dynamic optimizing compiler for java. In ACM Java Grande
Conference, pages 129–141, June 1999.

[9] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
instrumentation of production systems. In Proceedings of the 6th
Symposium on Operating Systems Design and Implementation, 2004.

[10] K.D. Cooper, M.W. Hall, and K. Kennedy. A methodology for
procedure cloning. Computer Languages, 19(2), April 1993.

[11] J. L. Henning. SPEC CPU2000: measuring cpu performance in the
new millennium. IEEE Computer, 33(7):28–35, July 2000.

[12] Intel. Pin User Manual. http://rogue.colorado.edu/Pin.
[13] Intel. Intel Itanium Architecture Software Developer’s Manual Vols

1-4, Oct. 2002.
[14] Intel. IA-32 Intel Architecture Software Developer’s Manual Vols 1-3,

2003.
[15] Intel. Intel Extended Memory 64 Technology Software Developer’s

Guide Vols 1-2, 2004.
[16] Intel. Intel PXA27x Processor Family Developer’s Manual, April

2004.
[17] H.-S. Kim and J. Smith. Hardware support for control transfers

in code caches. In Proceedings of the 36th Annual ACM/IEEE
International Symposium on Microarchitecture, Dec 2003.

[18] J. Larus and E. Schnarr. EEL: Machine-independent executable
editing. In Proceedings of the ACM SIGPLAN 95 Conference on
Programming Language Design and Implementation, pages 291–
300, June 1995.

[19] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes,
W. D. Lichtenstein, Robert P. Nix, John S. O’Donnell, and John C.
Ruttenberg. The Multiflow Trace Scheduling compiler. The Journal
of Supercomputing, 7(1-2):51–142, 1993.

[20] Chi-Keung Luk, Robert Muth, Harish Patil, Robert Cohn, and
Geoff Lowney. Ispike: A Post-link Optimizer for the Intel Itanium
Architecture. In Proceedings of the 2nd Conference on Code
Generation and Optimization, pages 15–26, 2004.

[21] J. Maebe, M. Ronsse, and K. De Bosschere. Diota: Dynamic
instrumentation, optimization and transformation of applications.
In Compendium of Workshops and Tutorials held in conjunction with
PACT’02, 2002.

[22] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. In Proceedings of the 3rd Workshop on Runtime
Verification. http://valgrind.kde.org/, 2003.

[23] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi.
Pinpointing representative portions of large intel itanium progams

with dynamic instrumentation. In Proceedings of the 37th Annual
ACM/IEEE International Symposium on Microarchitecture, Dec
2004.

[24] M. Poletto and V. Sarkar. Linear scan register allocation. ACM
Transactions. on Programming Languages and Systems, 21(5):895–
913, Sept 1999.

[25] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy,
B. Bershad, and B. Chen. Instrumentation and optimization of
win32/intel executables using Etch. In Proceedings of the USENIX
Windows NT Workshop, pages 1–7, August 1997.

[26] H. Saito, G. Gaertner, W. Jones, R. Eigenmann, H. Iwashita,
R. Liberman, M. van Waveren, and B. Whitney. Large system
performance of spec omp2001 benchmarks. In Proceedings of the
2002 Workship on OpenMP: Experiences and Implementation, 2002.

[27] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson, and
M. L. Soffa. Reconfigurable and retargetable software dynamic
translation. In Proceedings of the 1st Conference on Code Generation
and Optimization, pages 36–47, 2003.

[28] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of
the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct 2002.

[29] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation
in a distributed environment. Technical Report MSR-TR-2001-50,
Microsoft Research, April 2001.

[30] A. Srivastava and A. Eustace. Atom: A system for building
customized program analysis tools. In Proceedings of the ACM
SIGPLAN 94 Conference on Programming Language Design and
Implementation, pages 196–205, 1994.

[31] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D. Smith. System
support for automatic profiling and optimization. In Proceedings of
the 16th Symposium on Operating System Principles, October 1997.

