
M A R C H 1 9 9 0

WRL
Technical Note TN-14

Improving Direct-
Mapped Cache Perfor-
mance by the Addition
of a Small Fully-
Associative Cache and
Prefetch Buffers

Norman P. Jouppi

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a technical note. We use this form for
rapid distribution of technical material. Usually this represents research in progress.
Research reports are normally accounts of completed research and may include material
from earlier technical notes.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution DEC Western Research Laboratory, WRL-2
250 University Avenue Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache

and Prefetch Buffers

Norman P. Jouppi

March, 1990

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

Projections of computer technology forecast processors with peak perfor-
mance of 1,000 MIPS in the relatively near future. These processors could
easily lose half or more of their performance in the memory hierarchy if the
hierarchy design is based on conventional caching techniques. This paper
presents hardware techniques to improve the performance of caches.

Miss caching places a small fully-associative cache between a cache and its
refill path. Misses in the cache that hit in the miss cache have only a one
cycle miss penalty, as opposed to a many cycle miss penalty without the miss
cache. Small miss caches of 2 to 5 entries are shown to be very effective in
removing mapping conflict misses in first-level direct-mapped caches.

Victim caching is an improvement to miss caching that loads the small
fully-associative cache with the victim of a miss and not the requested line.
Small victim caches of 1 to 5 entries are even more effective at removing con-
flict misses than miss caching.

Stream buffers prefetch cache lines starting at a cache miss address. The
prefetched data is placed in the buffer and not in the cache. Stream buffers
are useful in removing capacity and compulsory cache misses, as well as
some instruction cache conflict misses. Stream buffers are more effective
than previously investigated prefetch techniques at using the next slower
level in the memory hierarchy when it is pipelined. An extension to the basic
stream buffer, called multi-way stream buffers, is introduced. Multi-way
stream buffers are useful for prefetching along multiple intertwined data ref-
erence streams.

Together, victim caches and stream buffers reduce the miss rate of the first
level in the cache hierarchy by a factor of two to three on a set of six large
benchmarks.

Copyright 1990 Digital Equipment Corporation

i

1. Introduction
Cache performance is becoming increasingly important since it has a dramatic effect on the

performance of advanced processors. Table 1 lists some cache miss times and the effect of a
miss on machine performance. Over the last decade, cycle time has been decreasing much faster
than main memory access time. The average number of machine cycles per instruction has also
been decreasing dramatically, especially when the transition from CISC machines to RISC
machines is included. These two effects are multiplicative and result in tremendous increases in
miss cost. For example, a cache miss on a VAX 11/780 only costs 60% of the average instruc-
tion execution. Thus even if every instruction had a cache miss, the machine performance would
slow down by only 60%! However, if a RISC machine like the WRL Titan [11] has a miss, the
cost is almost ten instruction times. Moreover, these trends seem to be continuing, especially the
increasing ratio of memory access time to machine cycle time. In the future a cache miss all the
way to main memory on a superscalar machine executing two instructions per cycle could cost
well over 100 instruction times! Even with careful application of well-known cache design tech-
niques, machines with main memory latencies of over 100 instruction times can easily lose over
half of their potential performance to the memory hierarchy. This makes both hardware and
software research on advanced memory hierarchies increasingly important.

Machine cycles cycle mem miss miss
per time time cost cost
instr (ns) (ns) (cycles) (instr)

--
VAX11/780 10.0 200 1200 6 .6
WRL Titan 1.4 45 540 12 8.6

? 0.5 4 280 70 140.0
--

Table 1: The increasing cost of cache misses

This paper investigates new hardware techniques for increasing the performance of the
memory hierarchy. Section 2 describes a baseline design using conventional caching techniques.
The large performance loss due to the memory hierarchy is a detailed motivation for the tech-
niques discussed in the remainder of the paper. Techniques for reducing misses due to mapping
conflicts (i.e., lack of associativity) are presented in Section 3. An extension to prefetch tech-
niques called stream buffering is evaluated in Section 4. Section 5 summarizes this work and
evaluates promising directions for future work.

1

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

2. Baseline Design
Figure 1 shows the range of configurations of interest in this study. The CPU, floating-point

unit, memory management unit (e.g., TLB), and first level instruction and data caches are on the
same chip or on a single high-speed module built with an advanced packaging technology. (We
will refer to the central processor as a single chip in the remainder of the paper, but chip or
module is implied.) The cycle time off this chip is 3 to 8 times longer than the instruction issue
rate (i.e., 3 to 8 instructions can issue in one off-chip clock cycle). This is obtained either by
having a very fast on-chip clock (e.g., superpipelining [9]), by issuing many instructions per
cycle (e.g., superscalar or VLIW), and/or by using higher speed technologies for the processor
chip than for the rest of the system (e.g., GaAs vs. BiCMOS).

The expected size of the on-chip caches varies with the implementation technology for the
processor, but higher-speed technologies generally result in smaller on-chip caches. For ex-
ample, quite large on-chip caches should be feasible in CMOS but only small caches are feasible
in the near term for GaAs or bipolar processors. Thus, although GaAs and bipolar are faster, the
higher miss rate from their smaller caches tends to decrease the actual system performance ratio
between GaAs or bipolar machines and dense CMOS machines to less than the ratio between
their gate speeds. In all cases the first-level caches are assumed to be direct-mapped, since this
results in the fastest effective access time [7]. Line sizes in the on-chip caches are most likely in
the range of 16B to 32B. The data cache may be either write-through or write-back, but this
paper does not examine those tradeoffs.

Address

L1 D - cache
4-32KB

L1 I - cache
4-32KB

Address

DataIn DataOut

Main memory interleaved >= 16-way

DataOutDataIn

2nd-level cache (mixed)
512KB-16MB, 128-256B lines
8-12ns latch to latch

FPUMMUCPU

L2 cache access:
16 - 30 ns

Instruction issue rate:
250 - 1000 MIPS
(every 1 - 4 ns)

Main memory access:
160 - 320 ns 512MB - 4 GB

Access time
ratio of
approx.
70 - 160X

Access time
ratio of
approx.
7 - 16X

Access time
ratio of
approx. 10X

Figure 1: Baseline design

The second-level cache is assumed to range from 512KB to 16MB, and to be built from very
high speed static RAMs. It is assumed to be direct-mapped for the same reasons as the first-level

2

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

caches. For caches of this size access times of 16 to 30ns are likely. This yields an access time
for the cache of 4 to 30 instruction times. The relative speed of the processor as compared to the
access time of the cache implies that the second-level cache must be pipelined in order for it to
provide sufficient bandwidth. For example, consider the case where the first-level cache is a
write-through cache. Since stores typically occur at an average rate of 1 in every 6 or 7 instruc-
tions, an unpipelined external cache would not have even enough bandwidth to handle the store
traffic for access times greater than seven instruction times. Caches have been pipelined in
mainframes for a number of years [8, 13], but this is a recent development for workstations.
Recently cache chips with ECL I/O’s and registers or latches on their inputs and outputs have
appeared; these are ideal for pipelined caches. The number of pipeline stages in a second-level
cache access could be 2 or 3 depending on whether the pipestage going from the processor chip
to the cache chips and the pipestage returning from the cache chips to the processor are full or
half pipestages.

In order to provide sufficient memory for a processor of this speed (e.g., several megabytes
per MIP), main memory should be in the range of 512MB to 4GB. This means that even if
16Mb DRAMs are used that it will contain roughly a thousand DRAMs. The main memory
system probably will take about ten times longer for an access than the second-level cache. This
access time is easily dominated by the time required to fan out address and data signals among a
thousand DRAMs spread over many cards. Thus even with the advent of faster DRAMs, the
access time for main memory may stay roughly the same. The relatively large access time for
main memory in turn requires that second-level cache line sizes of 128 or 256B are needed. As a
counter example, consider the case where only 16B are returned after 320ns. This is a bus
bandwidth of 50MB/sec. Since a 10 MIP processor with this bus bandwidth would be bus-
bandwidth limited in copying from one memory location to another [12], little extra performance
would be obtained by the use of a 100 to 1,000 MIP processor. This is an important considera-
tion in the system performance of a processor.

Several observations are in order on the baseline system. First, the memory hierarchy of the
system is actually quite similar to that of a machine like the VAX 11/780 [3, 4], only each level
in the hierarchy has moved one step closer to the CPU. For example, the 8KB board-level cache
in the 780 has moved on-chip. The 512KB to 16MB main memory on early VAX models has
become the board-level cache. Just as in the 780’s main memory, the incoming transfer size is
large (128-256B here vs. 512B pages in the VAX). The main memory in this system is of
similar size to the disk subsystems of the early 780’s and performs similar functions such as
paging and file system caching.

The actual parameters assumed for our baseline system are 1,000 MIPS peak instruction issue
rate, separate 4KB first-level instruction and data caches with 16B lines, and a 1MB second-level
cache with 128B lines. The miss penalties are assumed to be 24 instruction times for the first
level and 320 instruction times for the second level. The characteristics of the test programs
used in this study are given in Table 2. These benchmarks are reasonably long in comparison
with most traces in use today, however the effects of multiprocessing have not been modeled in
this work. The first-level cache miss rates of these programs running on the baseline system
configuration are given in Table 3.

The effects of these miss rates are given graphically in Figure 2. The region below the solid
line gives the net performance of the system, while the region above the solid line gives the

3

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

program dynamic data total program
name instr. refs. refs. type

ccom 31.5M 14.0M 45.5M C compiler
grr 134.2M 59.2M 193.4M PC board CAD tool
yacc 51.0M 16.7M 67.7M Unix utility
met 99.4M 50.3M 149.7M PC board CAD tool
linpack 144.8M 40.7M 185.5M numeric, 100x100
liver 23.6M 7.4M 31.0M LFK (numeric loops)

total 484.5M 188.3M 672.8M

Table 2: Test program characteristics

program baseline miss rate
name instr. data

ccom 0.096 0.120
grr 0.061 0.062
yacc 0.028 0.040
met 0.017 0.039
linpack 0.000 0.144
liver 0.000 0.273

Table 3: Baseline system first-level cache miss rates

performance lost in the memory hierarchy. For example, the difference between the top dotted
line and the bottom dotted line gives the performance lost due to first-level data cache misses.
As can be seen in Figure 2, most benchmarks lose over half of their potential performance in first
level cache misses. Only relatively small amounts of performance are lost to second-level cache
misses. This is primarily due to the large second-level cache size in comparison to the size of the
programs executed. Longer traces [2] of larger programs exhibit significant numbers of second-
level cache misses. Since the test suite used in this paper is too small for significant second-level
cache activity, second-level cache misses will not be investigated in detail, but will be left to
future work.

Since the exact parameters assumed are at the extreme end of the ranges described (maximum
performance processor with minimum size caches), other configurations would lose proportion-
ally less performance in their memory hierarchy. Nevertheless, any configuration in the range of
interest will lose a substantial proportion of its potential performance in the memory hierarchy.
This means that the greatest leverage on system performance will be obtained by improving the
memory hierarchy performance, and not by attempting to further increase the performance of the
CPU (e.g., by more aggressive parallel issuing of instructions). Techniques for improving the
performance of the baseline memory hierarchy at low cost are the subject of the remainder of
this paper. Finally, in order to avoid compromising the performance of the CPU core (compris-
ing of the CPU, FPU, MMU, and first level caches), any additional hardware required by the
techniques to be investigated should reside outside the CPU core (i.e., below the first level
caches). By doing this the additional hardware will only be involved during cache misses, and
therefore will not be in the critical path for normal instruction execution.

4

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

1 62 3 4 5
Benchmark

0

1000

100

200

300

400

500

600

700

800

900
Pe

rf
or

m
an

ce
 u

sa
ge

 (
M

IP
S)

ccom grr yacc met linpack liver

Lost due to
L2 misses

Lost due to
L1 D-cache misses

Lost due to
L1 I-cache misses

Program instruction execution

Figure 2: Baseline design performance

3. Reducing Conflict Misses: Miss Caching and Victim Caching
Misses in caches can be classified into four categories: conflict, compulsory, capacity [7], and

coherence. Conflict misses are misses that would not occur if the cache was fully-associative
and had LRU replacement. Compulsory misses are misses required in any cache organization
because they are the first references to an instruction or piece of data. Capacity misses occur
when the cache size is not sufficient to hold data between references. Coherence misses are
misses that occur as a result of invalidation to preserve multiprocessor cache consistency.

Even though direct-mapped caches have more conflict misses due to their lack of as-
sociativity, their performance is still better than set-associative caches when the access time costs
for hits are considered. In fact, the direct-mapped cache is the only cache configuration where
the critical path is merely the time required to access a RAM [10]. Conflict misses typically
account for between 20% and 40% of all direct-mapped cache misses [7]. Figure 3 details the
percentage of misses due to conflicts for our test suite. On average 39% of the first-level data
cache misses are due to conflicts, and 29% of the first-level instruction cache misses are due to
conflicts. Since these are significant percentages, it would be nice to "have our cake and eat it
too" by somehow providing additional associativity without adding to the critical access path for
a direct-mapped cache.

5

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

1 62 3 4 5
Benchmark

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
M

is
se

s
du

e
to

 C
on

fl
ic

ts

ccom grr yacc met linpack liver

Key: L1 D-cache misses
L1 I-cache misses

Figure 3: Percentage of conflict misses, 4K I and D caches, 16B lines

3.1. Miss Caching
We can add associativity to a direct-mapped cache by placing a small miss cache on-chip

between a first-level cache and the access port to the second-level cache (Figure 4). A miss
cache is a small fully-associative cache containing on the order of two to five cache lines of data.
When a miss occurs, data is returned not only to the direct-mapped cache, but also to the miss
cache under it, where it replaces the least recently used item. Each time the upper cache is
probed, the miss cache is probed as well. If a miss occurs in the upper cache but the address hits
in the miss cache, then the direct-mapped cache can be reloaded in the next cycle from the miss
cache. This replaces a long off-chip miss penalty with a short one-cycle on-chip miss. This
arrangement satisfies the requirement that the critical path is not worsened, since the miss cache
itself is not in the normal critical path of processor execution.

The success of different miss cache organizations at removing conflict misses is shown in
Figure 5. The first observation to be made is that many more data conflict misses are removed
by the miss cache than instruction conflict misses. This can be explained as follows. Instruction
conflicts tend to be widely spaced because the instructions within one procedure will not conflict
with each other as long as the procedure size is less than the cache size, which is almost always
the case. Instruction conflict misses are most likely when another procedure is called. The tar-
get procedure may map anywhere with respect to the calling procedure, possibly resulting in a
large overlap. Assuming at least 60 different instructions are executed in each procedure, the
conflict misses would span more than the 15 lines in the maximum size miss cache tested. In
other words, a small miss cache could not contain the entire overlap and so would be reloaded
repeatedly before it could be used. This type of reference pattern exhibits the worst miss cache
performance.

6

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

To processor

tag and comparator

From processor

To next lower cache From next lower cache

one cache line of data

one cache line of data

one cache line of data

one cache line of datatag and comparator

tag and comparator

tag and comparator

Direct mapped cache

MRU entry

LRU entry

Fully-associative miss cache

datatags

Figure 4: Miss cache organization

0 151 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of entries in miss cache

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
co

nf
lic

t m
is

se
s

re
m

ov
ed

Key:

ccom
grr
yacc
met
linpack
liver

L1 I-cache
L1 D-cache

Figure 5: Conflict misses removed by miss caching

Data conflicts, on the other hand, can be quite closely spaced. Consider the case where two
character strings are being compared. If the points of comparison of the two strings happen to

7

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

map to the same line, alternating references to different strings will always miss in the cache. In
this case a miss cache of only two entries would remove all of the conflict misses. Obviously
this is another extreme of performance and the results in Figure 5 show a range of performance
based on the program involved. Nevertheless, for 4KB data caches a miss cache of only 2

*entries can remove 25% percent of the data cache conflict misses on average, or 13% of the data
cache misses overall (see Figure 6). If the miss cache is increased to 4 entries, 36% percent of
the conflict misses can be removed, or 18% of the data cache misses overall. After four entries
the improvement from additional miss cache entries is minor, only increasing to a 25% overall
reduction in data cache misses if 15 entries are provided.

0 151 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of entries in miss cache

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
al

l m
is

se
s

re
m

ov
ed

Key:

ccom
grr
yacc
met
linpack
liver

L1 I-cache
L1 D-cache

Figure 6: Overall cache misses removed by miss caching

Since doubling the data cache size results in a 32% reduction in misses (over this set of
benchmarks when increasing data cache size from 4K to 8K), each additional line in the first
level cache reduces the number of misses by approximately 0.13%. Although the miss cache
requires more area per bit of storage than lines in the data cache, each line in a two line miss
cache effects a 50 times larger marginal improvement in the miss rate, so this should more than
cover any differences in layout size.

*Throughout this paper the average reduction in miss rates is used as a metric. This is computed by calculating
the percent reduction in miss rate for each benchmark, and then taking the average of these percentages. This has
the advantage that it is independent of the number of memory references made by each program. Furthermore, if
two programs have widely different miss rates, the average percent reduction in miss rate gives equal weighting to
each benchmark. This is in contrast with the percent reduction in average miss rate, which weights the program with
the highest miss rate most heavily.

8

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

Comparing Figure 5 and Figure 3, we see that the higher the percentage of misses due to
conflicts, the more effective the miss cache is at eliminating them. For example, in Figure 3 met
has by far the highest ratio of conflict misses to total data cache misses. Similarly, grr and yacc
also have greater than average percentages of conflict misses, and the miss cache helps these
programs significantly as well. linpack and ccom have the lowest percentage of conflict misses,
and the miss cache removes the lowest percentage of conflict misses from these programs. This
results from the fact that if a program has a large percentage of data conflict misses then they
must be clustered to some extent because of their overall density. This does not prevent
programs with a small number of conflict misses such as liver from benefiting from a miss
cache, but it seems that as the percentage of conflict misses increases, the percentage of these
misses removable by a miss cache increases.

3.2. Victim Caching
Consider a system with a direct-mapped cache and a miss cache. When a miss occurs, data is

loaded into both the miss cache and the direct-mapped cache. In a sense, this duplication of data
wastes storage space in the miss cache. The number of duplicate items in the miss cache can
range from one (in the case where all items in the miss cache map to the same line in the direct-
mapped cache) to all of the entries (in the case where a series of misses occur which do not hit in
the miss cache).

To make better use of the miss cache we can use a different replacement algorithm for the
small fully-associative cache [5]. Instead of loading the requested data into the miss cache on a
miss, we can load the fully-associative cache with the victim line from the direct-mapped cache
instead. We call this victim caching (see Figure 7). With victim caching, no data line appears
both in the direct-mapped cache and the victim cache. This follows from the fact that the victim
cache is loaded only with items thrown out from the direct-mapped cache. In the case of a miss
in the direct-mapped cache that hits in the victim cache, the contents of the direct-mapped cache
line and the matching victim cache line are swapped.

Depending on the reference stream, victim caching can either be a small or significant im-
provement over miss caching. The magnitude of this benefit depends on the amount of duplica-
tion in the miss cache. Victim caching is always an improvement over miss caching.

As an example, consider an instruction reference stream that calls a small procedure in its
inner loop that conflicts with the loop body. If the total number of conflicting lines between the
procedure and loop body were larger than the miss cache, the miss cache would be of no value
since misses at the beginning of the loop would be flushed out by later misses before execution
returned to the beginning of the loop. If a victim cache is used instead, however, the number of
conflicts in the loop that can be captured is doubled compared to that stored by a miss cache.
This is because one set of conflicting instructions lives in the direct-mapped cache, while the
other lives in the victim cache. As execution proceeds around the loop and through the proce-
dure call these items trade places.

The percentage of conflict misses removed by victim caching is given in Figure 8. Note that
victim caches consisting of just one line are useful, in contrast to miss caches which must have
two lines to be useful. All of the benchmarks have improved performance in comparison to miss
caches, but instruction cache performance and the data cache performance of benchmarks that
have conflicting long sequential reference streams (e.g., ccom and linpack) improve the most.

9

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

tags data Direct mapped cache

one cache line of data

one cache line of data

one cache line of data

one cache line of datatag

Fully-associative victim cache

Data from
next lower cache

comparator

comparatortag

tag comparator

comparatortagMRU entry

LRU entry

Data to processor

Address from processor

Address to
next lower cache

Figure 7: Victim cache organization

0 151 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of entries in victim cache

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
co

nf
lic

t m
is

se
s

re
m

ov
ed

Key:

ccom
grr
yacc
met
linpack
liver

L1 I-cache
L1 D-cache

Figure 8: Conflict misses removed by victim caching

The reduction in conflict misses obtained by victim caching is shown in Figure 9 relative to
the performance of a 2-way set associative cache (the key is the same as for Figure 8). Note that

10

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

a one-entry victim cache provides about 50% of the benefit of 2-way set-associativity for liver,
met, and grr. In fact, a direct-mapped cache with a 2-entry victim cache performs better than a
2-way set associative cache on liver. The dashed line for linpack instruction references at a
victim cache size of seven results from the fact that a 2-way set-associative instruction cache
performs slightly worse for linpack than a direct-mapped cache, and a direct-mapped cache with
an 8-entry victim cache performs slightly better than a direct-mapped cache alone.

0 151 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of entries in victim cache

1

2

E
qu

iv
al

en
t s

et
-a

ss
oc

ia
tiv

ity

Figure 9: Equivalent set-associativity provided by victim caching

Figure 10 shows the overall reduction in miss rate possible with victim caching. As can be
seen by comparing Figure 6 and Figure 10, the performance of the victim cache is in some cases
better than a miss cache with twice the number of entries. For example, consider yacc’s data
cache performance with a one-entry victim cache and a two-entry miss cache. Because the vic-
tim cache doesn’t throw away the victim, in some situations victim caching can result in fewer
misses than a miss cache with twice the number of entries. For example, imagine many cache
misses occur accessing new data (i.e., compulsory misses), effectively flushing out both a miss
cache and a victim cache. Next imagine another new line is referenced, causing a miss for both a
system with a miss cache and a system with a victim cache. If the old contents of the line are
referenced next, the miss cache will not contain the item, but a victim cache would. Thus the
system with a miss cache would have two misses to the next level in the memory hierarchy,
while the system with a victim cache would only have one.

11

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

0 151 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of entries in victim cache

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
al

l m
is

se
s

re
m

ov
ed

Key:

ccom
grr
yacc
met
linpack
liver

L1 I-cache
L1 D-cache

Figure 10: Overall cache misses removed by victim caching

3.3. The Effect of Direct-Mapped Cache Size on Victim Cache Performance
Figure 11 shows the performance of 1, 2, 4, and 15 entry victim caches when backing up

direct-mapped data caches of varying sizes. In general smaller direct-mapped caches benefit the
most from the addition of a victim cache. Also shown for reference is the total percentage of
conflict misses for each cache size. There are two factors to victim cache performance versus
direct-mapped cache size. First, as the direct-mapped cache increases in size, the relative size of
the victim cache becomes smaller. Since the direct-mapped cache gets larger but keeps the same
line size (16B), the likelihood of a tight mapping conflict which would be easily removed by
victim caching is reduced. Second, the percentage of conflict misses decreases slightly from
1KB to 32KB. As we have seen previously, as the percentage of conflict misses decreases, the
percentage of these misses removed by the victim cache decreases. The first effect dominates,
however, since as the percentage of conflict misses increases with very large caches (as in [7]),
the victim cache performance only improves slightly.

3.4. The Effect of Line Size on Victim Cache Performance
Figure 12 shows the performance of victim caches for 4KB direct-mapped data caches of

varying line sizes. As one would expect, as the line size at this level increases, the number of
conflict misses also increases. The increasing percentage of conflict misses results in an increas-
ing percentage of these misses being removed by the victim cache. Systems with victim caches
can benefit from longer line sizes more than systems without victim caches, since the victim
caches help remove misses caused by conflicts that result from longer cache lines. Note that
even if the area used for data storage in the victim cache is held constant (i.e., the number of

12

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

1 1282 4 8 16 32 64
Cache Size in KB

0

100

10

20

30

40

50

60

70

80

90
Pe

rc
en

ta
ge

 o
f

al
l m

is
se

s
re

m
ov

ed
Key: 1 entry victim cache

2 entry victim cache
4 entry victim cache
15 entry victim cache
percent conflict misses

L1 D-cache

Figure 11: Victim cache performance with varying direct-mapped data cache size

entries is cut in half when the line size doubles) the performance of the victim cache still im-
proves or at least breaks even when line sizes increase.

3.5. Victim Caches and Second-Level Caches
As the size of a cache increases, a larger percentage of its misses are due to conflict and com-

pulsory misses and fewer are due to capacity misses. (Unless of course the cache is larger than
the entire program, in which case only compulsory misses remain.) Thus victim caches might be
expected to be useful for second-level caches as well. Since the number of conflict misses in-
creases with increasing line sizes, the large line sizes of second-level caches would also tend to
increase the potential usefulness of victim caches.

One interesting aspect of victim caches is that they violate inclusion properties [1] in cache
hierarchies. However, the line size of the second level cache in the baseline design is 8 to 16
times larger than the first-level cache line sizes, so this violates inclusion as well.

Note that a first-level victim cache can contain many lines that conflict not only at the first
level but also at the second level. Thus, using a first-level victim cache can also reduce the
number of conflict misses at the second level. In investigating victim caches for second-level
caches, both configurations with and without first-level victim caches will need to be considered.

A thorough investigation of victim caches for megabyte second-level caches requires traces of
billions of instructions. At this time we only have victim cache performance for our smaller test
suite, and work on obtaining victim cache performance for multi-megabyte second-level caches
is underway.

13

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

4 2568 16 32 64 128
Cache Line Size in Bytes

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
al

l m
is

se
s

re
m

ov
ed

Key: 1 entry victim cache
2 entry victim cache
4 entry victim cache
15 entry victim cache
percentage conflict misses

L1 D-cache

Figure 12: Victim cache performance with varying data cache line size

3.6. Miss Caches, Victim Caches, and Error Correction
Another important use for miss caches, especially on-chip at the first-level, is in yield en-

hancement and fault tolerance. If parity is kept on all instruction and data cache bytes, and the
data cache is write-though, then cache parity errors can be handled as misses. If the refill path
bypasses the cache, then this scheme can also allow chips with hard errors to be used. (In fact
with byte parity, up to 1/9 of all bits in the cache could be faulty as long as there were at most
one bad bit per byte.) Unfortunately, without miss caches if the inner loop of linpack (i.e.,
saxpy) happens to land on a line with a defect or if a frequently used structure variable is on a
defective line, the performance of the system can be severely degraded (e.g., by greater than a
factor of four on some code segments). Moreover the performance degradation would vary from
chip to chip seemingly at random depending on defect location. This would limit the potential
yield enhancement to the engineering development phase of a project. However, with the ad-
dition of miss caches, the penalty on a defect-induced parity miss is only one cycle, which would
have a much smaller impact on machine performance than an off-chip miss. Thus, as long as the
number of defects was small enough to be handled by the miss cache, chips with hard defects
could be used in production systems. If miss caches are used to improve system performance in
the presence of fabrication defects, then instruction miss caches and even miss caches with only
one entry would be useful.

Victim caches as described earlier would not be useful for correction of misses due to parity
errors. This is because the victim is corrupted by the parity error, and is not worth saving.
However victim caches can also be used for error-correction with the following change. When a
cache miss is caused by a parity error, the victim cache is loaded with the incoming (miss) data

14

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

and not the victim. Thus it acts like a victim cache for normal misses and a miss cache for parity
misses. With this minor modification the benefits of miss caches for error-recovery and the
better performance of victim caching can be combined.

4. Reducing Capacity and Compulsory Misses
Compulsory misses are misses required in any cache organization because they are the first

references to a piece of data. Capacity misses occur when the cache size is not sufficient to hold
data between references. One way of reducing the number of capacity and compulsory misses is
to use prefetch techniques such as longer cache line sizes or prefetching methods [14, 6].
However, line sizes can not be made arbitrarily large without increasing the miss rate and greatly
increasing the amount of data to be transferred. In this section we investigate techniques to
reduce capacity and compulsory misses while mitigating traditional problems with long lines and
excessive prefetching.

4.1. Reducing Capacity and Compulsory Misses with Long Lines
If conflict misses did not exist, caches with much larger line sizes would be appropriate.

Figure 13 shows the reduction in compulsory and capacity misses with increasing line size, com-
pared to a baseline design with 8B lines. In general, all benchmarks have reduced miss rates as
the line size is increased, although yacc has anomalous instruction cache behavior at 64B line
sizes.

4 2568 16 32 64 128
Cache Line Size in Bytes

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
C

ap
ac

ity
 a

nd
 C

om
pu

ls
or

y
M

is
se

s
R

em
ov

ed

Key:

ccom
grr
yacc
met
linpack
liver

L1 I-cache
L1 D-cache

Figure 13: Effect of increasing line size on capacity and compulsory misses

However, when the effects of conflict misses are included, the picture changes dramatically
(see Figure 14). As can be seen, the instruction cache performance still increases with increasing

15

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

line size but the data cache performance peaks at a modest line size and decreases for further
increases in line size beyond that. This is a well known effect and is due to differences in spatial
locality between instruction and data references. For example, when a procedure is called, many
instructions within a given extent will be executed. However, data references tend to be much
more scattered, especially in programs that are not based on unit-stride array access. Thus the
long line sizes are much more beneficial to quasi-sequential instruction access patterns than the
more highly distributed data references.

4 2568 16 32 64 128
Cache Line Size in Bytes

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
A

ll
M

is
se

s
R

em
ov

ed

Key: L1 I-cache
L1 D-cache

Figure 14: Effect of increasing line size on overall miss rate

Although curves of average performance such as Figure 14 appear to roll off fairly smoothly,
the performance for individual programs can be quite different. Figure 15 shows that the data
cache line size providing the best performance actually varies from 16B to 128B, depending on
the program. Moreover, within this range programs can have dramatically different perfor-
mance. For example, liver has about half the number of data cache misses at a line size of 128B
as compared to 16B, but met has about three times the number of misses at 128B as compared to
16B. Similarly the performance of yacc degrades precipitously at line sizes above 16B. This
shows one problem with large line sizes: different programs have dramatically different perfor-
mance. For programs with long sequential reference patterns, relatively long lines would be
useful, but for programs with more diffuse references shorter lines would be best. Taking it a
step further, even within a given program the optimal line size is different for the different
references that a program makes.

Since the performance in Figure 13 increases fairly monotonically with increasing line size,
we know the steep drops in performance in Figure 15 are due to increasing numbers of conflict
misses. Since miss caches tend to remove a higher percentage of conflict misses when conflicts

16

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

4 5128 16 32 64 128 256
Cache Line Size in Bytes

-30

100

-20

-10

0

10

20

30

40

50

60

70

80

90
Pe

rc
en

ta
ge

 o
f

D
-c

ac
he

 M
is

se
s

R
em

ov
ed

Key:
ccom
grr
yacc
met
linpack
liver

L1 D-cache

Figure 15: Effect of increasing data cache line size on each benchmark

are frequent, miss caches should allow us to take better advantage of longer cache line sizes.
Figure 16 shows the average effectiveness of increasing line size in configurations with and
without miss caches. By adding a miss cache more benefits can be derived from a given increase
in line size, as well increasing the line size at which the minimum miss rate occurs. This effect
can be quite significant: increasing the line size from 16B to 32B with a 4-entry miss cache
decreases the miss rate by 36.3%, but only decreases it by 0.5% on average when increasing the
line size without a miss cache. Table 4 shows the minimum miss rate for each benchmark with
and without miss caches. Benchmarks with minimum miss rate line sizes that are not powers of
two have equal miss rates at the next larger and smaller powers of two. The geometric mean
over the six benchmarks of the line size giving the lowest miss rate increases from 46B to 92B
with the addition of a 4-entry miss cache. The minimum line size giving the best performance
on any of the six benchmarks also increases from 16B to 32B with the addition of a 4-entry miss
cache.

Figure 17 shows the detailed behavior of most of the programs. The performance of systems
with 8B lines are all normalized to zero, independent of the size of their miss cache (if any).
This removes the reduction in misses simply due to miss caching from the comparison of the
effects of longer cache lines. Thus the actual performance of systems with miss caches at 16B
lines are all better than systems without miss caches.

Systems with miss caching continue to obtain benefits from longer line sizes where systems
without miss caches have flat or decreasing performance. Figure 18 shows the effects of longer
cache line sizes on yacc and met with varying miss cache sizes, similarly normalized to perfor-
mance with 8B lines. The performance of yacc is affected most dramatically - the sharp dropoff

17

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

4 2568 16 32 64 128
Cache Line Size in Bytes

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
D

-c
ac

he
 M

is
se

s
R

em
ov

ed

Key: with 4-entry miss cache
with 2-entry miss cache
without miss cache

Figure 16: Effect of increasing data cache line size with miss caches

miss cache | line size with minimum miss rate | geom | |
entries | ccom grr yacc met liver | mean | min |
-----------+----------------------------------+------+-----+

4 | 256 96 64 32 128 | 92 | 32 |
2 | 128 64 128 32 128 | 84 | 32 |
0 | 128 48 16 32 64 | 46 | 16 |

-----------+----------------------------------+------+-----+

Table 4: Line sizes with minimum miss rates by program

at line sizes above 16B is completely eliminated even with miss caches with as few as two
entries. The performance of met is a little more subtle. A system with a miss cache, although
always performing better than a system without a miss cache, does not benefit as much on met
from an increase in line size. Thus the number of additional misses removed with longer lines
when using miss caches for met is lower than when not using a miss cache for line sizes in the
range of 16B to 64B. However the absolute miss rate (not shown) is still lower when using the
miss caches. At line sizes of 128B, adding a miss cache with four entries can turn a 100%
increase in miss rate for met into only a 22% increase in miss rate, although a two entry miss
cache has little effect. This benchmark is the primary reason why the average performance of
two-entry and four-entry miss caches in Figure 16 diverge at a line size of 128B.

Miss caches for very large lines or with more than four entries at moderate line sizes were not
simulated. As line sizes become larger, the amount of storage required by the miss cache in-
creases dramatically: with our 4KB cache an 8-entry miss cache with 128B lines requires an
amount of storage equal to 1/4 the total cache size! An interesting area of future research for

18

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

4 5128 16 32 64 128 256
Cache Line Size in Bytes

-30

100

-20

-10

0

10

20

30

40

50

60

70

80

90
Pe

rc
en

ta
ge

 o
f

D
-c

ac
he

 M
is

se
s

R
em

ov
ed

Key:

ccom
grr
linpack
liver

with 4-entry miss cache
with 2-entry miss cache
without miss cache

Figure 17: Benchmark-specific performance with increasing data cache line size

4 5128 16 32 64 128 256
Cache Line Size in Bytes

-30

100

-20

-10

0

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
D

-c
ac

he
 M

is
se

s
R

em
ov

ed

Key:

yacc
met

with 4-entry miss cache
with 2-entry miss cache
without miss cache

Figure 18: yacc and met performance with increasing data cache line size

systems with very long lines is the possibility of miss caching on subblocks. Much of the benefit
of full-line miss caches might then be obtained with a fraction of the storage requirements.

19

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

4.2. Reducing Capacity and Compulsory Misses with Prefetch Techniques
Longer line sizes suffer from the disadvantage of providing a fixed transfer size for different

programs and access patterns. Prefetch techniques are interesting because they can be more
adaptive to the actual access patterns of the program. This is especially important for improving
the performance on long quasi-sequential access patterns such as instruction streams or unit-
stride array accesses.

A detailed analysis of three prefetch algorithms has appeared in [14]. Prefetch always
prefetches after every reference. Needless to say this is impractical in our base system since
many level-one cache accesses can take place in the time required to initiate a single level-two
cache reference. This is especially true in machines that fetch multiple instructions per cycle
from an instruction cache and can concurrently perform a load or store per cycle to a data cache.
Prefetch on miss and tagged prefetch are more promising techniques. On a miss prefetch on
miss always fetches the next line as well. It can cut the number of misses for a purely sequential
reference stream in half. Tagged prefetch can do even better. In this technique each block has a
tag bit associated with it. When a block is prefetched, its tag bit is set to zero. Each time a block
is used its tag bit is set to one. When a block undergoes a zero to one transition its successor
block is prefetched. This can reduce the number of misses in a purely sequential reference
stream to zero, if fetching is fast enough. Unfortunately the large latencies in the base system
can make this impossible. Consider Figure 19, which gives the amount of time (in instruction
issues) until a prefetched line is required during the execution of ccom. Not surprisingly, since
the line size is four instructions, prefetched lines must be received within four instruction-times
to keep up with the machine on uncached straight-line code. Because the base system second-
level cache takes many cycles to access, and the machine may actually issue many instructions
per cycle, tagged prefetch may only have a one-cycle-out-of-many head start on providing the
required instructions.

4.2.1. Stream Buffers
What we really need to do is to start the prefetch before a tag transition can take place. We

can do this with a mechanism called a stream buffer (Figure 20). A stream buffer consists of a
series of entries, each consisting of a tag, an available bit, and a data line.

When a miss occurs, the stream buffer begins prefetching successive lines starting at the miss
target. As each prefetch request is sent out, the tag for the address is entered into the stream
buffer, and the available bit is set to false. When the prefetch data returns it is placed in the entry
with its tag and the available bit is set to true. Note that lines after the line requested on the miss
are placed in the buffer and not in the cache. This avoids polluting the cache with data that may
never be needed.

Subsequent accesses to the cache also compare their address against the first item stored in the
buffer. If a reference misses in the cache but hits in the buffer the cache can be reloaded in a
single cycle from the stream buffer. This is much faster than the off-chip miss penalty. The
stream buffers considered in this section are simple FIFO queues, where only the head of the
queue has a tag comparator and elements removed from the buffer must be removed strictly in
sequence without skipping any lines. In this simple model non-sequential line misses will cause
a stream buffer to be flushed and restarted at the miss address even if the requested line is al-
ready present further down in the queue. More complicated stream buffers that can provide
already-fetched lines out of sequence are discussed in following sections.

20

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

0 262 4 6 8 10 12 14 16 18 20 22 24
Instructions until prefetch returns

0

100

20

40

60

80

Pe
rc

en
t o

f
m

is
se

s
re

m
ov

ed

ccom I-cache prefetch, 16B lines

Key:

prefetch on miss

tagged prefetch

prefetch always

Figure 19: Limited time for prefetch

When a line is moved from a stream buffer to the cache, the entries in the stream buffer can
shift up by one and a new successive address is fetched. The pipelined interface to the second
level allows the buffer to be filled at the maximum bandwidth of the second level cache, and
many cache lines can be in the process of being fetched simultaneously. For example, assume
the latency to refill a 16B line on a instruction cache miss is 12 cycles. Consider a memory
interface that is pipelined and can accept a new line request every 4 cycles. A four-entry stream
buffer can provide 4B instructions at a rate of one per cycle by having three requests outstanding
at all times. Thus during sequential instruction execution long latency cache misses will not oc-
cur. This is in contrast to the performance of tagged prefetch on purely sequential reference
streams where only one line is being prefetched at a time. In that case sequential instructions
will only be supplied at a bandwidth equal to one instruction every three cycles (i.e., 12 cycle
latency / 4 instructions per line).

Figure 21 shows the performance of a four-entry instruction stream buffer backing a 4KB
instruction cache and a data stream buffer backing a 4KB data cache, each with 16B lines. The
graph gives the cumulative number of misses removed based on the number of lines that the
buffer is allowed to prefetch after the original miss. (In practice the stream buffer would prob-
ably be allowed to fetch until the end of a virtual memory page or a second-level cache line. The
major reason for plotting stream buffer performance as a function of prefetch length is to get a
better idea of how far streams continue on average.) Most instruction references break the
purely sequential access pattern by the time the 6th successive line is fetched, while many data
reference patterns end even sooner. The exceptions to this appear to be instruction references for
liver and data references for linpack. liver is probably an anomaly since the 14 loops of the
program are executed sequentially, and the first 14 loops do not generally call other procedures

21

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

+1

Tail entry

Head entry

tags data Direct mapped cache

From next lower cache

From processor To processor

To next lower cache

tag and
comparator

tag

tag

Stream buffer
(FIFO Queue version)

one cache line of data

one cache line of data

one cache line of data

one cache line of data

tag a

a

a

a

Figure 20: Sequential stream buffer design

or do excessive branching, which would cause the sequential miss pattern to break. The data
reference pattern of linpack can be understood as follows. Remember that the stream buffer is
only responsible for providing lines that the cache misses on. The inner loop of linpack (i.e.,
saxpy) performs an inner product between one row and the other rows of a matrix. The first use
of the one row loads it into the cache. After that subsequent misses in the cache (except for
mapping conflicts with the first row) consist of subsequent lines of the matrix. Since the matrix
is too large to fit in the on-chip cache, the whole matrix is passed through the cache on each
iteration. The stream buffer can do this at the maximum bandwidth provided by the second-level
cache. Of course one prerequisite for this is that the reference stream is unit-stride or at most
skips to every other or every third word. If an array is accessed in the non-unit-stride direction
(and the other dimensions have non-trivial extents) then a stream buffer as presented here will be
of little benefit.

Figure 22 gives the bandwidth requirements in three typical stream buffer applications. I-
stream references for ccom are quite regular (when measured in instructions). On average a new
16B line must be fetched every 4.2 instructions. The spacing between references to the stream
buffer increases when the program enters short loops and decreases when the program takes
small forward jumps, such as when skipping an else clause. Nevertheless the fetch frequency is
quite regular. This data is for a machine with short functional unit latencies, such as the MIPS
R2000 or the MultiTitan CPU, so the CPI is quite close to 1 without cache misses.

Data stream buffer reference timings for linpack and ccom are also given in Figure 22. The
reference rate for new 16B lines for linpack averages one every 27 instructions. Since this ver-

22

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

0 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Length of stream run

0

100

10

20

30

40

50

60

70

80

90
C

um
ul

at
iv

e
pe

rc
en

ta
ge

 o
f

al
l m

is
se

s
re

m
ov

ed
Key:

ccom
grr
yacc
met
linpack
liver

L1 I-cache
L1 D-cache

Figure 21: Sequential stream buffer performance

0 162 4 6 8 10 12 14
Line sequence number in sequential stream

0

500

100

200

300

400

In
st

ru
ct

io
ns

 u
nt

il
lin

e
re

qu
ir

ed
 (

ha
rm

on
ic

 m
ea

n)

Key:

ccom I-stream

ccom D-stream

linpack D-stream

Figure 22: Stream buffer bandwidth requirements

sion of linpack is double-precision, this works out to a new iteration of the inner loop every 13.5

23

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

instructions. This is larger than one would hope. This version of linpack is rather loose in that it
does an integer multiply for addressing calculations for each array element, and the loop is not
unrolled. If the loop were unrolled and extensive optimizations were performed the rate of
references would increase, but the rate should still be less than that of the instruction stream.
ccom has interesting trimodal performance. If the next successive line is used next after a miss it
is required on average only 5 cycles after the miss. For the next two lines after a miss, succes-
sive data lines (16B) are required every 10 instructions on average. The first three lines provide
most (82%) of the benefit of the stream buffer. After that successive lines are required at a rate
closer to that of linpack, about every 24 instructions on average.

In general, if the backing store can produce data at an average bandwidth of a new word (4B)
every cycle, the stream buffer will be able to keep up with successive references. This should
suffice for instruction streams, as well as for block copies that are heavily unrolled and use
double-precision loads and stores. If this bandwidth is not available, the benefit of instruction
stream buffers will be reduced and block copies and other similar operations will be negatively
impacted as well. However, bandwidths equaling a new word every 1.5 to 2 cycles will still
suffice for many of the data references. Note that these values are for bandwidths, which are
much easier to achieve than total latencies such as required by the prefetch schemes in Figure 19.

4.2.2. Multi-Way Stream Buffers
Overall, the stream buffer presented in the previous section could remove 72% of the instruc-

tion cache misses, but it could only remove 25% of the data cache misses. One reason for this is
that data references tend to consist of interleaved streams of data from different sources. In order
to improve the performance of stream buffers for data references, a multi-way stream buffer was
simulated (Figure 23). It consists of four stream buffers in parallel. When a miss occurs in the
data cache that does not hit in any stream buffer, the stream buffer hit least recently is cleared
(i.e., LRU replacement) and it is started fetching at the miss address.

Figure 24 shows the performance of the multi-way stream buffer on our benchmark set. As
expected, the performance on the instruction stream remains virtually unchanged. This means
that the simpler single stream buffer will suffice for instruction streams. The multi-way stream
buffer does significantly improve the performance on the data side, however. Overall, the multi-
way stream buffer can remove 43% of the misses for the six programs, almost twice the perfor-
mance of the single stream buffer. Although the matrix operations of liver experience the
greatest improvement (it changes from 7% to 60% reduction), all of the programs benefit to
some extent. Note also that liver makes unit stride accesses to its data structures.

4.2.3. Quasi-Sequential Stream Buffers
In the previous section only one address comparator was provided for the stream buffer. This

means that even if the requested line was in the stream buffer, but not in the first location with
the comparator, the stream buffer will miss on the reference and its contents will be flushed.
One obvious improvement to this scheme is to place a comparator at each location in the stream
buffer. Then if a cache line is skipped in a quasi-sequential reference pattern, the stream buffer
will still be able to supply the cache line if it has already been fetched.

Figure 25 shows the performance of a stream buffer with three comparators. The quasi-stream
buffer is able to remove 76% of the instruction-cache misses, an improvement of 4% over a

24

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

To next lower cache From next lower cache

Direct mapped cachedata

To processor

tag and
com-
parator

tag

tag

+1

tagtag

+1

tag

tag

tag and
com-
parator

tag and
com-
parator

tag

tag

+1

tagtag

+1

tag

From processor

tags

tag

tag and
com-
parator one line of data

one line of data

one line of data

one line of dataa

a

a

a a

a

a

a one line of data

one line of data

one line of data

one line of data one line of data

one line of data

one line of data

one line of dataa

a

a

a a

a

a

a one line of data

one line of data

one line of data

one line of data

Figure 23: Four-way stream buffer design

purely sequential stream buffer, giving a 14% reduction in the number of misses remaining. This
is probably due to the quasi-stream buffer’s ability to continue useful fetching when code is
skipped, such as when then or else clauses are skipped in if statements. The version simulated
had three comparators, so it could skip at most 2 cache lines plus up to 3/4 of a cache line on
either side depending on alignment, for a total of 16 to 22 instructions maximum. This compares
with only 0 to 6 instructions that may be skipped in a sequential stream buffer (depending on
branch alignment) without causing the stream buffer to be flushed.

The extra comparators of a quasi-stream buffer also improve the performance of a four-way
data stream buffer. Overall, the four-way quasi-stream buffer can remove 47% of all misses,
which is 4% more than the purely sequential four-way stream buffer.

Since the amount of hardware required for a few extra comparators on a single stream buffer
is small, quasi-stream buffers seem like a useful generalization of sequential stream buffers for
instruction streams. This is because only three additional comparators would be required to con-
vert a four-entry sequential stream buffer into a quasi-stream buffer. However it may not be
worthwhile for multi-way data quasi-stream buffers, since the number of extra comparators re-

25

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

0 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Length of 4-way stream run

0

100

10

20

30

40

50

60

70

80

90

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f
al

l m
is

se
s

re
m

ov
ed

Key:

ccom
grr
yacc
met
linpack
liver

L1 I-cache
L1 D-cache

Figure 24: Four-way stream buffer performance

0 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Length of 4-way quasi-stream run

0

100

10

20

30

40

50

60

70

80

90

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f
al

l m
is

se
s

re
m

ov
ed

Key:

ccom
grr
yacc
met
linpack
liver

L1 I-cache
L1 D-cache

Figure 25: Quasi-sequential 4-way stream buffer performance

quired would be many times as large. An interesting area for software research is the ability of

26

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

compilers to reorganize code and data layouts to maximize the use of stream buffers. If tech-
niques to optimize sequentiality of references are successful, the need for extra comparators on
stream buffers will be lessened.

4.2.4. Stream Buffer Performance vs. Cache Size
Figure 26 gives the performance of single and 4-way stream buffers with 16B lines as a func-

tion of cache size. The instruction stream buffers have remarkably constant performance over a
wide range of cache sizes. The data stream buffer performance generally improves as the cache
size increases. This is especially true for the single stream buffer, whose performance increases
from a 15% reduction in misses for a data cache size of 1KB to a 35% reduction in misses for a
data cache size of 128KB. This is probably because as the cache size increases, it can contain
data for reference patterns that access several sets of data, or at least all but one of the sets. What
misses that remain are more likely to consist of very long single sequential streams. For ex-
ample, as the cache size increases the percentage of compulsory misses increase, and these are
more likely to be sequential in nature than data conflict or capacity misses.

1 1282 4 8 16 32 64
Cache Size in KB

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
al

l m
is

se
s

re
m

ov
ed

Key: single sequential stream buffer
4-way sequential stream bufferL1 I-cache

L1 D-cache

Figure 26: Stream buffer performance vs. cache size

4.2.5. Stream Buffer Performance vs. Line Size
Figure 27 gives the performance of single and 4-way stream buffers as a function of the line

size in the stream buffer and 4KB cache. The reduction in misses provided by a single data
stream buffer falls by a factor of 6.8 going from a line size of 8B to a line size of 128B, while a
4-way stream buffer’s contribution falls by a factor of 4.5. This is not too surprising since data
references are often fairly widely distributed. In other words if a piece of data is accessed, the
odds that another piece of data 128B away will be needed soon are fairly low. The single data

27

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

stream buffer performance is especially hard hit compared to the multi-way stream buffer be-
cause of the increase in conflict misses at large line sizes.

4 2568 16 32 64 128
Cache Line Size in Bytes

0

100

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
al

l m
is

se
s

re
m

ov
ed

Key: single sequential stream buffer
4-way sequential stream buffer
L1 I-cache
L1 D-cache

Figure 27: Stream buffer performance vs. line size

The instruction stream buffers perform well even out to 128B line sizes. Both the 4-way and
the single stream buffer still remove at least 40% of the misses at 128B line sizes, coming down
from an 80% reduction with 8B lines. This is probably due to the large granularity of conflicting
instruction reference streams, and the fact that many procedures are more than 128B long.

4.2.6. Comparison to Classical Prefetch Performance
In order to put the performance of stream buffers in perspective, in this section we compare

the performance of stream buffers to some prefetch techniques previously studied in the litera-
ture. The performance of prefetch on miss, tagged prefetch, and always prefetch on our six
benchmarks is presented in Table 5. This data shows the reduction in misses assuming the use of
these prefetch techniques with a second-level cache latency of one instruction-issue. Note that
this is quite unrealistic since one-instruction issue latency may be less than a machine cycle, and
second-level caches typically have a latency of many CPU cycles. Nevertheless, these figures
give an upper bound of the performance of these prefetch techniques. The performance of the
prefetch algorithms in this study is consistent with data earlier presented in the literature. In
[14] reductions in miss rate for a PDP-11 trace on a 8KB mixed cache (only mixed caches were
studied) with 16B lines and 8-way set associativity was found to be 27.8% for prefetch on miss,
50.2% for tagged prefetch, and 51.8% for prefetch always.

Table 6 compares the prefetch performance from Table 5 with the stream buffer performance
presented earlier. On the instruction side, a simple single stream buffer outperforms prefetch on

28

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

fetch ccom yacc met grr liver linpack avg
--
4KB instr. cache, direct-mapped, 16B lines, 1-instr prefetch latency:
on miss 44.1 42.4 45.2 55.8 47.3 42.8 46.3
tagged 78.6 74.3 65.7 76.1 89.0 77.2 76.8
always 82.0 80.3 62.5 81.8 89.5 84.4 80.1
--
4KB data cache, direct-mapped, 16B lines, 1-instr prefetch latency:
on miss 38.2 10.7 14.1 14.5 49.8 75.7 33.8
tagged 39.7 18.0 21.0 14.8 63.1 83.1 40.0
always 39.3 37.2 18.6 11.7 63.1 83.8 42.3
--

Table 5: Upper bound on prefetch performance: percent reduction in misses

miss by a wide margin. This is not surprising since for a purely sequential reference stream
prefetch on miss will only reduce the number of misses by a factor of two. Both the simple
single stream buffer and the quasi-stream buffer perform almost as well as tagged prefetch. As
far as traffic is concerned, the stream buffer will fetch more after a miss than tagged prefetch, but
it will not start fetching on a tag transition, so a comparison of traffic ratios would be interesting
future research. The performance of the stream buffers on the instruction stream is slightly less
than prefetch always. This is not surprising, since the performance of always prefetch ap-
proximates the percentage of instructions that are not taken branches, and is an upper bound on
the reduction of instruction cache misses by sequential prefetching. However, the traffic ratio of
the stream buffer approaches should be much closer to that of prefetch on miss or tagged
prefetch than to prefetch always.

technique misses eliminated
--
for 4KB direct-mapped instruction cache w/ 16B lines:
prefetch on miss (1-instr latency) 46.3
single stream buffer 72.0
quasi-stream buffer (3 comparator) 76.0
tagged prefetch (1-instr latency) 76.8
always prefetch (1-instr latency) 80.1
--
for 4KB direct-mapped data cache w/ 16B lines:
single stream buffer 25.0
prefetch on miss (1-instr latency) 33.8
tagged prefetch (1-instr latency) 40.0
always prefetch (1-instr latency) 42.3
4-way stream buffer 43.0
4-way quasi-stream buffer 47.0
--

Table 6: Upper bound of prefetch performance vs. stream buffer performance

Table 6 also compares the performance of stream buffers to other prefetch techniques for data
references. Here both types of 4-way stream buffers outperform the other prefetch strategies.
This is primarily because the prefetch strategies always put the prefetched item in the cache,
even if it is not needed. The stream buffer approaches only move an item into to the cache if it is
requested, resulting in less pollution than always placing the prefetched data in the cache. This

29

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

is especially important for data references since the spatial locality of data references is less than
that of instruction references, and prefetched data is more likely to be pollution than are
prefetched instructions.

Independent of the relative performance of stream buffers and ideal prefetch techniques, the
stream buffer approaches are much more feasible to implement. This is because they can take
advantage of pipelined memory systems (unlike prefetch on miss or tagged prefetch for sequen-
tial reference patterns). They also have lower latency requirements on prefetched data than the
other prefetching techniques, since they can start fetching a block before the previous block is
used. Finally, at least for instruction stream buffers, the extra hardware required by a stream
buffer is often comparable to the additional tag storage required by tagged prefetch.

4.3. Combining Long Lines and Stream Buffers
Long cache lines and stream buffers can be used advantageously together, since the strengths

and weaknesses of long lines and stream buffers are complimentary. For example, long lines
fetch data that, even if not used immediately, will be around for later use. However, the other
side of this advantage is that excessively long lines can pollute a cache. On the other hand,
stream buffers do not unnecessarily pollute a cache since they only enter data when it is re-
quested on a miss. However, at least one reference to successive data must be made relatively
soon, otherwise it will pass out of the stream buffer without being used.

Table 7 gives the performance of various long-line and stream-buffer alternatives for a 4KB
instruction cache. The first thing to notice is that all the stream buffer approaches, independent
of their line size, outperform all of the longer line size approaches. In fact, the stream buffer
approaches outperform a hypothetical machine with a line size that can be set to the best value
for each benchmark. The fact that the stream buffers are doing better than this shows that they
are actually providing an effective line size that varies on a per reference basis within each
program. Also note that the line size used in the stream buffer approaches is not that significant,
although it is very significant if a stream buffer is not used. Finally, the quasi-stream buffer
capability approximates the performance of purely sequential stream buffers with longer line
sizes. Consider for example a quasi-stream buffer than can skip two 16B lines. It will have a
"prefetch reach" of between 16 and 22 four-byte instructions depending on alignment. This is a
little longer span than a sequential 32B line stream buffer (8 to 15 instructions depending on
alignment) and a little shorter than a sequential 64B line stream buffer (16 to 31 instructions).
Thus it is not surprising that the performance of the 16B three-comparator quasi-stream buffer is
between that of a 32B and a 64B line sequential stream buffer. Given that it is usually easier to
make the cache line size equal to the transfer size, and that transfer sizes larger than 16B seem
unlikely in the near future (at least for microprocessor-based machines), it seems that the use of
quasi-sequential stream buffers with smaller line sizes such as 16B would be the most promising
approach for the instruction cache. In particular if a quasi-sequential stream buffer is used, line
sizes of greater than 32B have little benefit for 4KB instruction caches.

Table 8 gives the results for data stream buffers in comparison with longer line sizes, assum-
ing there is no miss cache. Here the superiority of stream buffers over longer data cache line
sizes is much more pronounced than with long instruction cache lines. For example, a four-way
quasi-sequential data stream buffer can eliminate twice as many misses as the optimal line size
per program, in comparison to only about 14% better performance for an instruction stream buff-

30

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

instr cache configuration misses
(default does not include a miss cache) eliminated
--
32B lines 38.0%
64B lines 55.4%
128B lines 69.7%
optimal line size per program 70.0%
16B lines w/ single stream buffer 72.0%
32B lines w/ single stream buffer 75.2%
16B lines w/ quasi-stream buffer 76.0%
64B lines w/ single stream buffer 77.6%
32B lines w/ quasi-stream buffer 80.0%
64B lines w/ quasi-stream buffer 80.2%
--

Table 7: Improvements relative to a 16B instruction line size without miss caching

er over an optimal per-program instruction cache line size. This is due to the wider range of
localities present in data references. For example, some data reference patterns consist of
references that are widely separated from previous data references (e.g., manipulation of com-
plex linked data structures), while other reference patterns are sequential for long distances (e.g.,
unit stride array manipulation). Different instruction reference streams are quite similar by com-
parison. Thus it is not surprising that the ability of stream buffers to provide an effective line
size that varies on a reference-by-reference basis is more important for data caches than for in-
struction caches.

data cache configuration misses
(default does not include a miss cache) eliminated
--
64B lines 0.5%
32B lines 1.0%
optimal line size per program 19.2%
16B lines w/ single stream buffer 25.0%
16B lines w/ 4-way stream buffer 43.0%
16B lines w/ 4-way quasi-stream buffer 47.0%
--

Table 8: Improvements relative to a 16B data line size without miss caching

Table 9 presents results assuming that longer data cache line sizes are used in conjunction with
a four-entry miss cache. The addition of a miss cache improves the performance of the longer
data cache line sizes, but they still underperform the stream buffers. This is still true even for a
system with a different line size per program.

One obvious way to combine longer lines and stream buffers is to increase the line size up to
the smallest line size that gives a minimum miss rate for some program. In our previous ex-
amples with a four-line miss cache this is a 32B line since this provides a minimum miss rate for
met. Then stream buffers can be used to effectively provide what amounts to a variable line size
extension. With 32B lines and a stream buffer a 68.6% further decrease in misses can be ob-
tained. This does in fact yield the configuration with the best performance. Further increasing

31

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

data cache configuration misses
(default includes 4-entry miss cache) eliminated
--
32B lines 24.0%
16B lines w/ single stream buffer 25.0%
64B lines 31.0%
optimal line size per program 38.0%
16B lines w/ 4-way stream buffer 43.0%
16B lines w/ 4-way quasi-stream buffer 47.0%
64B lines w/ 4-way quasi-stream buffer 48.7%
32B lines w/ 4-way quasi-stream buffer 52.1%
--

Table 9: Improvements relative to a 16B data line size and 4-entry miss cache

the line size to 64B with a stream buffer is ineffective even though it reduces the average number
of misses in configurations without a stream buffer. This is because the stream buffer will
provide the same effect as longer cache lines for those references that need it, but will not have
the extra conflict misses associated with longer cache line sizes.

5. Conclusions
Small miss caches (e.g., 2 to 5 entries) have been shown to be effective in reducing data cache

conflict misses for direct-mapped caches in range of 1K to 8K bytes. They effectively remove
tight conflicts where misses alternate between several addresses that map to the same line in the
cache. Miss caches are increasingly beneficial as line sizes increase and the percentage of con-
flict misses increases. In general it appears that as the percentage of conflict misses increases,
the percent of these misses removable by a miss cache also increases, resulting in an even steeper
slope for the performance improvement possible by using miss caches.

Victim caches are an improvement to miss caching that saves the victim of the cache miss
instead of the target in a small associative cache. Victim caches are even more effective at
removing conflict misses than miss caches.

Stream buffers prefetch cache lines after a missed cache line. They store the line until it is
requested by a cache miss (if ever) to avoid unnecessary pollution of the cache. They are par-
ticularly useful at reducing the number of capacity and compulsory misses. They can take full
advantage of the memory bandwidth available in pipelined memory systems for sequential
references, unlike previously discussed prefetch techniques such as tagged prefetch or prefetch
on miss. Stream buffers can also tolerate longer memory system latencies since they prefetch
data much in advance of other prefetch techniques (even prefetch always). Stream buffers can
also compensate for instruction conflict misses, since these tend to be relatively sequential in
nature as well.

Multi-way stream buffers are a set of stream buffers that can prefetch down several streams
concurrently. In this study the starting prefetch address is replaced over all stream buffers in
LRU order. Multi-way stream buffers are useful for data references that contain interleaved ac-
cesses to several different large data structures, such as in array operations. However, since the
prefetching is of sequential lines, only unit stride or near unit stride (2 or 3) access patterns
benefit.

32

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

The performance improvements due to victim caches and due to stream buffers are relatively
orthogonal for data references. Victim caches work well where references alternate between two
locations that map to the same line in the cache. They do not prefetch data but only do a better
job of keeping data fetched available for use. Stream buffers, however, achieve performance
improvements by prefetching data. They do not remove conflict misses unless the conflicts are
widely spaced in time, and the cache miss reference stream consists of many sequential accesses.
These are precisely the conflict misses not handled well by a victim cache due to its relatively
small capacity. Over the set of six benchmarks, on average only 2.5% of 4KB direct-mapped
data cache misses that hit in a four-entry victim cache also hit in a four-way stream buffer for
ccom, met, yacc, grr, and liver. In contrast, linpack, due to its sequential data access patterns,
has 50% of the hits in the victim cache also hit in a four-way stream buffer. However only 4%
of linpack’s cache misses hit in the victim cache (it benefits least from victim caching among the
six benchmarks), so this is still not a significant amount of overlap between stream buffers and
victim caching.

1 62 3 4 5
Benchmark

0

1000

100

200

300

400

500

600

700

800

900

Pe
rf

or
m

an
ce

 u
sa

ge
 (

M
IP

S)

ccom grr yacc met linpack liver

Lost due to
L2 misses

Lost due to L1
D-cache misses

Lost due to L1
I-cache misses

Gained by data
victim cache

Gained by data
4-way stream buf

Gained by instr
stream buf

Base system instruction execution

Figure 28: System performance with victim cache and stream buffers

Figure 28 shows the performance of the base system with the addition of a four entry data
victim cache, a instruction stream buffer, and a four-way data stream buffer. (The base system
has on-chip 4KB instruction and 4KB data caches with 24 cycle miss penalties and 16B lines to a
three-stage pipelined second-level 1MB cache with 128B lines and 320 cycle miss penalty.) The
lower solid line in Figure 28 gives the performance of the original base system without the vic-
tim caches or buffers while the upper solid line gives the performance with buffers and victim
caches. The combination of these techniques reduces the first-level miss rate to less than half of
that of the baseline system, resulting in an average of 143% improvement in system performance
for the six benchmarks. These results show that the addition of a small amount of hardware can
dramatically reduce cache miss rates and improve system performance.

33

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

One way of looking at the performance of victim caching and stream buffers is to consider the
effective increase in cache size provided by these techniques. Table 10 gives the increase in
cache size required to give the same instruction miss rate as a smaller cache plus a stream buffer.
It is possible that by adding a stream buffer the compulsory misses are reduced to an extent that
reduces the overall miss rate to a rate lower than that achieved by any cache with a 16B line size.
Asterisks in Table 10 denotes situations where this occurs, or at least the miss rate is reduced
beyond that of a 128KB cache, the largest size simulated. ccom has a particularly bad instruction
cache miss rate, and it has a very large working set, so it benefits the most from instruction
stream buffering.

program multiple increase in effective cache size
name 1K 2K 4K 8K 16K 32K 64K

ccom 26.3X 16.1X 7.0X 6.1X 4.1X 3.5X *
grr 6.0X 3.5X 4.3X 3.4X 1.8X 2.7X 1.7X
yacc 7.5X 4.1X 3.0X 2.8X 1.9X 1.7X *
met 3.2X 1.8X 2.1X 2.9X 1.9X 3.0X 1.9X
linpack 1.7X 1.9X 3.6X * * * *
liver 4.0X 2.0X * * * * *

* denotes no cache size below 256KB attains as low a miss rate
as cache with streambuffer

Table 10: Effective increase in instruction cache size provided by streambuffer with 16B lines

Corresponding equivalent increases in effective data cache size provided by the addition of a
4-entry victim cache and a 4-way stream buffer are given in Table 11. linpack and liver sequen-
tially access very large arrays from one end to the other before returning. Thus they have very
large effective cache size increases since with stream buffering they have equivalent cache sizes
equal to their array sizes. (This assumes the stream buffer can keep up with their data consump-
tion, which is true for our baseline system parameters.)

program multiple increase in effective cache size
name 1K 2K 4K 8K 16K 32K 64K

ccom 6.3X 5.0X 3.9X 3.1X 2.3X 1.8X 1.8X
grr 1.6X 1.5X 1.4X 1.2X 3.8X * *
yacc 1.6X 2.5X 1.7X 1.6X 1.7X 2.1X *
met 1.4X 3.3X 1.2X 1.6X 3.3X 1.8X *
linpack 98.3X 53.6X 30.4X 15.8X * * *
liver 26.0X 16.0X 9.5X 8.4X 6.3X 3.4X 1.9X

* denotes no cache size below 256KB attains as low a miss rate
as cache with 4-way streambuffer and 4-entry victim cache

Table 11: Effective increase in data cache size provided with stream buffers and victim caches using 16B lines

34

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

This study has concentrated on applying victim caches and stream buffers to first-level caches.
An interesting area for future work is the application of these techniques to second-level caches.
Also, the numeric programs used in this study used unit stride access patterns. Numeric
programs with non-unit stride and mixed stride access patterns also need to be simulated.
Finally, the performance of victim caching and stream buffers needs to be investigated for
operating system execution and for multiprogramming workloads.

Acknowledgements

Mary Jo Doherty, John Ousterhout, Jeremy Dion, Anita Borg, and Richard Swan provided
many helpful comments on an early draft of this paper. Alan Eustace suggested victim caching
as an improvement to miss caching.

References
[1] Baer, Jean-Loup, and Wang, Wenn-Hann.

On the Inclusion Properties for Multi-Level Cache Hierarchies.
In The 15th Annual Symposium on Computer Architecture, pages 73-80. IEEE Computer

Society Press, June, 1988.

[2] Borg, Anita, Kessler, Rick E., Lazana, Georgia, and Wall, David W.
Long Address Traces from RISC Machines: Generation and Analysis.
Technical Report 89/14, Digital Equipment Corporation Western Research Laboratory,

September, 1989.

[3] Digital Equipment Corporation, Inc.
VAX Hardware Handbook, volume 1 - 1984
Maynard, Massachusetts, 1984.

[4] Emer, Joel S., and Clark, Douglas W.
A Characterization of Processor Performance in the VAX-11/780.
In The 11th Annual Symposium on Computer Architecture, pages 301-310. IEEE Com-

puter Society Press, June, 1984.

[5] Eustace, Alan.
Private communication.
February, 1989.

[6] Farrens, Matthew K., and Pleszkun, Andrew R.
Improving Performance of Small On-Chip Instruction Caches .
In The 16th Annual Symposium on Computer Architecture, pages 234-241. IEEE Com-

puter Society Press, May, 1989.

[7] Hill, Mark D.
Aspects of Cache Memory and Instruction Buffer Performance.
PhD thesis, University of California, Berkeley, 1987.

35

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

[8] International Business Machines, Inc.
IBM3033 Processor Complex, Theory of Operation/Diagrams Manual - Processor

Storage Control Function (PSCF)
Poughkeepsie, N.Y., 1982.

[9] Jouppi, Norman P., and Wall, David W.
Available Instruction-Level Parallelism For Superpipelined and Superscalar Machines.
In Third International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 272-282. IEEE Computer Society Press, April, 1989.

[10] Jouppi, Norman P.
Architectural and Organizational Tradeoffs in the Design of the MultiTitan CPU.
In The 16th Annual Symposium on Computer Architecture, pages 281-289. IEEE Com-

puter Society Press, May, 1989.

[11] Nielsen, Michael J. K.
Titan System Manual.
Technical Report 86/1, Digital Equipment Corporation Western Research Laboratory,

September, 1986.

[12] Ousterhout, John.
Why Aren’t Operating Systems Getting Faster As Fast As Hardware?.
Technical Report Technote 11, Digital Equipment Corporation Western Research

Laboratory, October, 1989.

[13] Smith, Alan J.
Sequential program prefetching in memory hierarchies.
IEEE Computer 11(12):7-21, December, 1978.

[14] Smith, Alan J.
Cache Memories.
Computing Surveys :473-530, September, 1982.

36

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

ii

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

Table of Contents
1. Introduction 1
2. Baseline Design 2
3. Reducing Conflict Misses: Miss Caching and Victim Caching 5

3.1. Miss Caching 6
3.2. Victim Caching 9
3.3. The Effect of Direct-Mapped Cache Size on Victim Cache Performance 12
3.4. The Effect of Line Size on Victim Cache Performance 12
3.5. Victim Caches and Second-Level Caches 13
3.6. Miss Caches, Victim Caches, and Error Correction 14

4. Reducing Capacity and Compulsory Misses 15
4.1. Reducing Capacity and Compulsory Misses with Long Lines 15
4.2. Reducing Capacity and Compulsory Misses with Prefetch Techniques 20

4.2.1. Stream Buffers 20
4.2.2. Multi-Way Stream Buffers 24
4.2.3. Quasi-Sequential Stream Buffers 24
4.2.4. Stream Buffer Performance vs. Cache Size 27
4.2.5. Stream Buffer Performance vs. Line Size 27
4.2.6. Comparison to Classical Prefetch Performance 28

4.3. Combining Long Lines and Stream Buffers 30
5. Conclusions 32
References 35

iii

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

iv

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

List of Figures
Figure 1: Baseline design 2
Figure 2: Baseline design performance 5
Figure 3: Percentage of conflict misses, 4K I and D caches, 16B lines 6
Figure 4: Miss cache organization 7
Figure 5: Conflict misses removed by miss caching 7
Figure 6: Overall cache misses removed by miss caching 8
Figure 7: Victim cache organization 10
Figure 8: Conflict misses removed by victim caching 10
Figure 9: Equivalent set-associativity provided by victim caching 11
Figure 10: Overall cache misses removed by victim caching 12
Figure 11: Victim cache performance with varying direct-mapped data cache 13

size
Figure 12: Victim cache performance with varying data cache line size 14
Figure 13: Effect of increasing line size on capacity and compulsory misses 15
Figure 14: Effect of increasing line size on overall miss rate 16
Figure 15: Effect of increasing data cache line size on each benchmark 17
Figure 16: Effect of increasing data cache line size with miss caches 18
Figure 17: Benchmark-specific performance with increasing data cache line size 19
Figure 18: yacc and met performance with increasing data cache line size 19
Figure 19: Limited time for prefetch 21
Figure 20: Sequential stream buffer design 22
Figure 21: Sequential stream buffer performance 23
Figure 22: Stream buffer bandwidth requirements 23
Figure 23: Four-way stream buffer design 25
Figure 24: Four-way stream buffer performance 26
Figure 25: Quasi-sequential 4-way stream buffer performance 26
Figure 26: Stream buffer performance vs. cache size 27
Figure 27: Stream buffer performance vs. line size 28
Figure 28: System performance with victim cache and stream buffers 33

v

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

vi

IMPROVING DIRECT-MAPPED CACHE PERFORMANCE

List of Tables
Table 1: The increasing cost of cache misses 1
Table 2: Test program characteristics 4
Table 3: Baseline system first-level cache miss rates 4
Table 4: Line sizes with minimum miss rates by program 18
Table 5: Upper bound on prefetch performance: percent reduction in misses 29
Table 6: Upper bound of prefetch performance vs. stream buffer performance 29
Table 7: Improvements relative to a 16B instruction line size without miss cach- 31

ing
Table 8: Improvements relative to a 16B data line size without miss caching 31
Table 9: Improvements relative to a 16B data line size and 4-entry miss cache 32
Table 10: Effective increase in instruction cache size provided by streambuffer 34

with 16B lines
Table 11: Effective increase in data cache size provided with stream buffers and 34

victim caches using 16B lines

vii

