
Comments on "The Case for the Reduced Instruction Set 

Computer," by Patterson and Ditzel 

Douglas W. Clark and William D. Strecker 

VAX Systems Architecture 
Digital Equipment Corporation 

1925 Andover Street 
Tewksbury, MA 01876 

September 1980 

Patterson and Ditzel's paper [3] argues that a Reduced 
Instruction Set Computer (RISC) can be as cost-effective as a 
Complex Instruction Set Computer (CISC). In this note we suggest 
that several of their points are misleading, and present some 
evidence on the other side of the argument. We rely heavily, as 
did they, on the VAX-iI architecture [5] for examples. 

The superiority of a RISC over a corresponding CISC will be very 
difficult to prove. Casual evaluation of cost and performance 
will not be sufficient unless the differences between a CISC and 
a RISC are extreme, which is unlikely. Paper designs will not be 
enough. A careful comparison between a RISC and a CISC would 
seem to us to require a complete design of the hardware and 
microcode for both, construction or simulation of the processors, 
the writing of compilers and possibly an operating system, and 
performance measurement across a variety of applications. 
Without this level of effort, claims of increased 
cost-effectiveness for a RISC are hard to support. 

This is not to say, however, that this subject is unworthy of 
discussion or argument until such a comprehensive experiment is 
performed. The issues raised in the Patterson-Ditzel paper are 
interesting and important and architects of either style of 
computer can profit from a discussion of them. 

Complexity vs. Size 

The paper contraposes "Reduced" and "Complex". This is a false 
dichotomy. Can instruction set complexity be measured merely by 
instruction count? How about instruction count divided by the 

34 



number of data types? Does completeness (e.g. orthogonality of 
operator and data type) increase or decrease complexity? Our 
most serious criticism of the paper is that it contains no formal 
definition of a RISC or a CISC. In the absence of a definition 
of complexity the statement "...we shall argue that in many cases 
the complex instruction sets are more detrimental than useful" is 
meaningless. 

Code Density 

Patterson and Ditzel claim that code compaction, normally thought 
of as an advantage of a CISC such as VAX [i] , is as easily 
achieved on a RISC, and that in any case dense code is not as 
important as it once was, thanks to cheap memory. But their case 
for the RISC boils down to the sentence "We suspect that code 
compaction can be as easily achieved by cleaning up the original 
[simple] instruction set," which is not convincing without 
supporting evidence. And while the cost of memory decreases over 
time, it will remain true that a small amount of cheap memory 
costs less than a large amount. Furthermore, for a g iven 
computer model memory is a per-system cost, while microcode 
development (for a CISC) is a one-time cost. 

Dense code, of course, offers other advantages as well. Cache 
performance and paging performance will be better if there are 
more instructions per cache block and per page. 

Different Languages Use Different Instructions 

The paper makes the point (citing Shustek [4] and others) that 
"'very few opcodes account for most of a program's execution.'" 
True enough. But what about different languages? 

The top 20 instructions for, say, Fortran may not make the COBOL 
hit-parade at all. The well-known Fortran benchmark Whetstone, 
for example, displays the usual kind of instruction frequency 
distribution on the VAX-ii/780: the top 10 instructions account 
for 60% of all instruction executions, the top 20 get over 75%, 
the top 40 get over 90%. But those same top 10 account for a 
mere 8% of the instruction executions in a comparable synthetic 
COBOL benchmark. Whetstone's top 20 get 21% (as opposed to 75%) 
of the COBOL benchmark's executions. More telling still, the top 
20 of Whetstone account for only 4% of the time taken by the 
COBOL benchmark. 

35 



So a multiplicity of instructions can help to support a 
multiplicity of languages. As a recent paper [2] points out, 

"For most programming environments, a system 
must be able to effectively support multiple 
languages. . . A single instruction set 
tailored to one particular language is 
constrictive, as it can make implementation of 
other languages difficult and inefficient." 

Time is of the Essence 

As Shustek argues in his thesis [4], the amount of time spent 
executing an instruction is more important for performance than 
its frequency of execution. He gives examples of rarely-executed 
instructions that consume a large amount of execution time. 
Replacing such an instruction by a multi-instruction sequence can 
make this much worse, and optimizing only those instructions that 
are executed frequently has the obvious hazard. 

Here is an example from the VAX-ii/780: in one time-sharing 
benchmark the instruction MOVC3 (a character-move instruction) 
accounts for less than 0.4% of the instruction executions, but 
for 13% of the time; it is 60th in the frequency ranking, ist in 
the time ranking. 

Ease of Compiler-Writing 

A large instruction set can be justified by the desire to keep 
operators and data types orthogonal. Thus the VAX architecture 
includes, for example, six different exclusive-OR instructions: 
two- and three-operand versions for bytes, words, and longwords. 
Some of these are undoubtedly little used. But code generation 
in VAX compilers is simplified by having them all (this is 
attested to by VAX compiler-writers). Furthermore, once you have 
microcode for some of them, the others can be implemented very 
cheaply. 

Microcode Size 

The paper's PDP-ii/40 -VAX-ii/780 microcode size comparisons are 
specious. The amount of microcode in the 11/60 is nearly ten 
times the 11/40, even though the instruction sets are the same. 
The increase in microcode reflects (a) increased performance, 
(b) replacement of hardware by microcode, and (c) more elaborate 
diagnostic and console functions. The 11/780 also supports three 
instruction sets (PDP-Ii, VAX-ii, and EDIT) and has much more 
complex memory management. 

36 



Increased Design Time 

The paper's PDP-i - VAX-iI/780 design time comparisons are also 
specious. Ignoring the instruction set altogether, the 
VAX-ii/780 hardware system and the VMS software are enormously 
more complex than the PDP-i processor. Furthermore, there are 
numerous time-consuming processes in a large company designing 
products for high-volume manufacturing that do not exist in a 
small company designing products for low-volume manufacturing. 

Increased Design Errors 

It is unarguable that there will be more microcode errors in a 
large amount of microcode than in a small amount, all other 
things being equal. But if there is a small amount (RISC) , 
somebody has to implement the complex functions somewhere. In a 
RISC, the compiler and run-time system would bear the burden 
formerly borne by microcode, and implementation errors would 
presumably turn up in this software. 

Now one might argue that software is easier to write than 
microcode, and easier to change. And one might counter-argue 
that microprogram development tools such as microcode compilers 
will change this situation. But a complex function demanded by a 
user program must be implemented somehow, and errors will occur. 

The detection of design errors depends in large measure on formal 
and informal test processes. This is as true for compilers as it 
is for processors. Such processes can readily be developed for 
processors. (How would Patterson and Ditzel compare the 
complexity of the VAX-i i/780 microcode to that of, say, an 
optimizing compiler?) 

Interface Level 

One of the advantages of a higher level hardware-software 
interface (CISC) over a lower level interface (RISC) is that 
there is more opportunity to use specialized hardware to achieve 
improved cost/performance. For example, consider a CISC with a 
multiply instruction and a RISC without one. The multiply 
function would be performed on the RISC with a sequence of moves, 
branches, shifts, and adds. To speed up the multiply function on 
the RISC would require a speed-up of the whole processor while 
speeding up the multiply instruction on the CISC could be 
accomplished by adding specialized data paths and control. For 
some technologies and performance levels, the latter may be far 
less expensive than the former. 

37 



RISC and VLSI 

In the absence of metrics, this section of the Patterson-Ditzel 
paper is unconvincing. Surely a simple instruction set can be 
implemented in less silicon than a complex one. This doesn't 
mean, however, that system cost-effectiveness is increased by 
reducing instruction set complexity. 

The VAX INDEX Instruction 

Anecdotal accounts of irrational implementations are certainly 
interesting. Is it typical, however, that composite instructions 
run more ~lowly than equivalent sequences of simple instructions? 
The paper reports that a sequence of several simple instructions 
can replace the VAX INDEX instruction with a 45% speed gain on 
the 780. This is a problem of implementation, not architecture. 
Fundamentally, after all, the implementation of the INDEX 
function with more than one instruction simply cannot take less 
time than the one-instruction version, assuming equal hardware in 
both cases. The explanation of this anomaly is that the 780's 
Floating Point Accelerator speeds up the multiply in the 
multi-instruction implementation, but doesn't see INDEX at all. 

A Final VAX Fact 

Patterson and Ditzel suggest that marketing strategy can increase 
the size or complexity of an instruction set. We can state from 
first-hand knowledge that this is not true for the VAX 
architecture. 

[i] 

[2] 

[3] 

[4] 

[5] 

References 

Dietz, W.B., and Szewerenko, L. Computer Family 
Architecture Selection, Phase IV Final Report: Comparative 
Evaluation of the Candidate Computer Architectures. Tech. 
Report, Computer Science Dept., Carnegie-Mellon University, 
Nov. 1979. 

Ditzel, D.R., and Patterson, D.A. Retrospective on 
High-Level Language Computer Architecture. Seventh 
International Symposium on Computer Architecture, La Baule, 
France, May 1980. 

Patterson, D.A., and Ditzel, D.R. The Case for the Reduced 
Instruction Computer. ACM SIGARCH Computer Architecture 
News, this issue. 

Shustek, L.J. Analysis and Performance of Computer 
Instruction Sets. Ph.D. thesis, Stanford Linear Accelerator 
Report 205, Stanford University, May 1978. 

Strecker, W.D. VAX-ii/780: A Virtual Address Extension to 
the DEC PDP-iI Family. Proc. NCC, June 1978, pp. 967-980. 

38 


