
The Microarchitecture of the Pentium 4 Processor

Overview

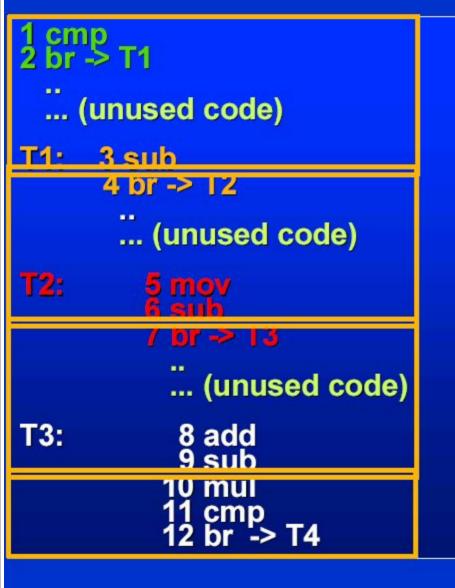
Intel® NetBurstTM Micro-architecture Forum-Fall 2000 400 MHz Advanced System Transfer Bus Cache Advanced Dynamic Execution Hyper Pipelined Rapid Technology Execution Engine Streaming SIMD **Extensions 2** Execution Enhanced Floating **Trace Cache** Point / Multi-Media Intel

Copyright © 2000 Intel Corporation.

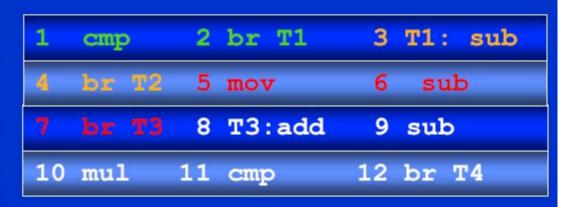
Pentium 4

PDX

Execution Trace Cache



• Advanced L1 instruction cache -Caches "decoded" IA-32 instructions (uops) Removes decoder pipeline latency Capacity is ~12K uOps Integrates branches into single line Follows predicted path of program execution


Execution Trace Cache feeds fast engine

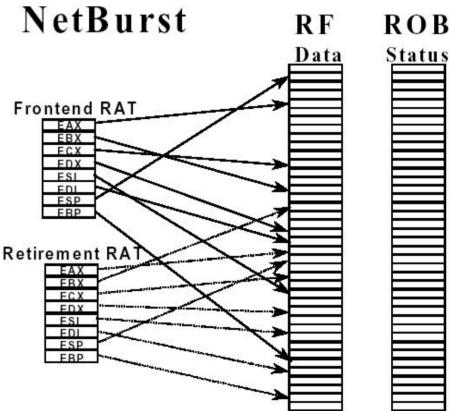
Execution Trace Cache

Trace Cache Delivery

Branch Prediction

 Accurate branch prediction is key to enabling longer pipelines

- Dramatic improvement over P6 branch predictor:
 - -8x the size (4K)
 - -Eliminated 1/3 of the mispredictions
- Proven to be better than all other publicly disclosed predictors


-(g-share, hybrid, etc)

Advanced **Dynamic Execution** 2000 • Extends basic features found in P6 core Very deep speculative execution -126 instructions in flight (3x P6) -48 loads (3x P6) and 24 stores (2x P6) Provides larger window of visibility Better use of execution resources

Deep Speculation Improves Parallelism

Register Allocation and Renaming

- The allocator allocates a reorder buffer (ROB) entry
 Track the completion status of an µop
- Remember the most current version of each register in Register Alias Table (RAT)
 - A new instruction knows where to get the correct current instance
- Allocate the ROB and Register File (RF) separately
- On retirement, no result data values are actually moved from one physical structure to another

µop Scheduling

- Determine when an µop is ready to execute by tracking its input register operand
- Several individual µop schedulers
 - schedules different types of µops for various execution units
 - are tied to four different dispatch ports

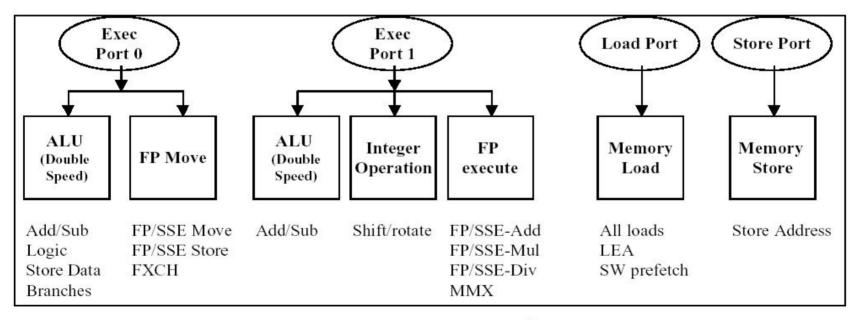


Figure 6: Dispatch ports in the Pentium[®] 4 processor

Pipeline

- Long pipeline with short steps
 - □20 stages
 - □ Higher clock rate and less logic per stage
 - Lots of in-flight instructions
 - Long store queue
 - Misprediction cost increases
 - □ 50% frequency gives 30% performance

Execution Core

Different clock speeds

- High speed ALU (2x main clock, 3GHz)
 Main clock speed, ½ speed, bus speed
- Different ALU types
 - □ Fast for common cases (60-70% of µops)
 - Slower for more complex operations
- Fast ALU uses staggered computation
- Each RF has bypass network to forward computed data without write first

Caching

- Trace cache as L1 instruction cache
- Small 'n' fast L1 data cache (2-clock latency), large L2 cache with prefetching for high bandwidth streaming
- Long pipeline and early dispatch
 - □Assume hit in L1 cache
 - Dependent instructions might use bad data
 - Detect and replay incorrect ones

Instruction Set

IA-32 instructions decoded into µopts

µopts are cached in trace cache to avoid repeated decoding

Microcode ROM for complex IA-32 ins.

□string move, fault and interrupt handling

ISA extensions (MMX/SSE/SSE2)

SIMD instructions

- SSE2: 128-bit packed data of types:
 - byte, word, double word, quad word, double precision floating point

Pros and Cons

- +High performance
- +High accuracy of branch predictor
- –Long pipeline = large penalty for branch mispredictions
- Overlapped store-to-load forwarding not possible
- Optimizations for older cores can give negative effect

Questions

- What is the reason to separate ROB and RF entries in the P4?
- Is a long pipeline and higher clock a clear win?
- Do we know anything about the secret branch predictor and its strategies?
- How much overhead comes with the IA-32 decoder?
- Architecture optimized code defeats one SW distribution for all. Cost for SW companies?
- How efficient is it to double or quad-clock buses? Any problems doing so?
- In what ways is the Trace Cache BTB different from the Front-End BTB?
- Does the deep pipeline approach make the high clock rates somewhat artificial?