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Abstract 

An architecture for improving computer per- 
formance is presented and discussed. The main 
feature of the architecture is a high degree of ._-.-. - 
decoupling between operand access anb execution. 
This results in an implementation which has two 
separate instruction streams that communicate via 
queues. A similar architecture has been 
previously proposed for array processors, but in 
that context the software is called on to do most 
of the coordination and synchronization between 
the instruction streams. This paper emphasizes 
implementation features that remove this burden 
from the programmer. Performance comparisons with 
a conventional scalar architecture are given, and 
these show that considerable performance gains are 
possible. 

Single instruction stream versions, both 
physical and conceptual, are discussed with the 
primary goal of minimizing the differences with 
conventional architectures. This would allow 
known compilation and programing techniques to be 
used. Finally, the problem of deadlock in such a 
system is discussed, and one possible solution is 
given. 

1. Introduction 

It has long been known that a practical 
impediment to scalar computer performance is that 
any straightforward instruction decoding/issuing 
scheme has some bottleneck through which 
instructions pass at the maximum rate of one per 
clock period CU. Furthermore, modern 
organizations additionally constrain instructions 
to issue in program sequence. Some potential 
instruction overlap is' lost because later 
instructions that could issue may be be held up 
behind an earlier instruction being blocked due to 
conflicts. For example, studies by Foster and 
Riseman [Z] and Tjaden and Flynn [3] have shown 
that average speedups of 1.7 to almost 1.9 times 
are possible by issuing instructions out of order 
or by allowing multiple instructions to issue at 
once. Sophisticated issue methods used in the CDC 
6600 [4] and IBM 360/91 [5] were intended to 
achieve some of this performance gain, but these 
complex issue methods have been abandoned by their 
manufacturers, no doubt in large part because any 
performance improvement was more than offset by 
additional hardware design, debugging, and 
maintenance problems. 

A second critical constraint on performance 
IS time required for processor-memory 
communication. Current trends, both in hardware 
and software, tend to aggravate the memory 
communication problem. In hardware, the trend 
toward higher levels of integration has the effect 
of increasing the performance impact of all forms 
of inter-chip communication, including processor- 
memory communication. At the architectural level, 
the trend is toward elaborate virtual memory and 
protection methods. These tend to slow memory 
communication because of the required address 
translation and protection checks. The use of 
multiprocessors often means that individual 
processors must contend for memory resources. In 
addition, interconnection structures add delay 
both due to their size and additional 
contention. Cache memory becomes a less effective 
solution in multiprocessor systems due to the 
problem of maintaining coherence. At the software 
level, facilities for defining elaborate data 
types and structures are being developed. This 
causes an increase in the number of operations 
needed to check types, compute indices, etc. all 
of which adds to increased delay when accessing 
data. All of the above point to the need for 
processors that can diminish the effects of 
increased memory communication time. 

This paper discussed a new type of processor 
architecture which separates its processing into 
two parts: access to memory to fetch operands and 
store results, and operand execution to produce 
the results. By architecturally decoupling data 
access from execution, it is possible to construct 
implementations that provide much of the 
performance b;;rovement offered by complex issuing 
methods, without significant design 
complexity. In addition, it can allow 
considerable memory conunication delay to be 
hidden. 

The architecture proposed here represents an 
evolutionary step, since a similar, but more 
restricted, separation of tasks appeared as early 
as STRETCH [6], and has been employed to some 
degree in several high performance- processors, 
including those from IBM. Andahl. CDC and CRAY. 
Recently: an array processor, the CSPI MAP 200 [7] 
has pushed the degree of access and execution 
decoupling beyond that in any of the mainframe 
computers mentioned above. The architecture of 
the MAP 200, is, of course, directed largely 
toward vector or array type calculations. In 
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addition it has a relatively "bare bones" 
architecture, as do other array processors, that 
places a great deal of responsibility for resource 
scheduling and interlocking on software. The 
benefits of a highly decoupled access/execute 
architecture 90 beyond array processor 
applications, however. The author was 
independently studying a virtually identical 
decoupling method in the context of high 
performance mainframe computers when he became 
aware of the MAP 200. As a result of the 
viewpoint taken in this study, the methods 
discussed here reflect a philosophy of reducing 
prografmier responsibility (and compiler 
complexity) while achieving improved performance. 

This paper begins with an overview of 
decoupled access/execute architectures. Then some 
specific implementation issues are discussed. 
These are handling of stores, conditional 
branches, and queues. All three of these are 
handled in new ways that remove the burden of 
synchronization and interlocking from software and 
place it in the hardware. Next, results of a 
performance analysis of the 14 Lawrence Livermore 
Loops [B] is given. This is followed by a 
discussion of ways that the two instruction 
streams of a decoupled access/execute architecture 
can be merged while retaining most, if not all, 
the performance improvement. Finally, a brief 
discussion of deadlock, its causes, detection and 
prevention is given. 

2. Architecture Overview 

simplest 
acces$exe,t:', (DAE) 

form, a decoupled 
architecture is separated 

into two major functional units, each with its own 
instruction stream (Fig. 1). These are the Access 
Processor or A-processor and the Execute Processor 
or E-processor. Each unit has its own distinct 
set of registers, in the A-processor these are 
denoted as registers AO, Al, . . . . in the E- 
processor they are X0, Xl, . . . . 

The two processors execute separate programs 
with similar structure, but which perform two 
different functions. The A-processor performs all 
operations necessary for transferring data to and 
from main memory. That is, it does all address 
computation and performs all memory read and write 
requests. It would also contain the operand 
cache, if the system has one. Oata fetched from 
memory is either used internally in the A- 
processor, or is placed in a FIFO queue and is 
sent to the E-processor. This is the Access to 
Execute Queue, or AEQ.The E-processor removes 
operands from the AEQ as it needs them and places 
any results into a second FIFO queue, the Execute 
to Access Queue or EAQ. 

The A-processor issues memory stores as soon 
as it computes the store address; it does not wait 
until the store data is received via the EAQ. 
Store addresses awaiting data are held internally 
in the Write Address Queue or WAQ. As data 
arrives at the A-processor via the EAQ, it is 
paired with the first address in the WAQ and Is 

I Access 
Processor 

A 1 register 
file 

Fig. 1. Conceptual 

Execute 
Processor 

DAE Architecture 

sent to memory. This pairing takes place 
automatically as the data becomes available. It 
should be noted that in [7] there is a third 
functional unit separate from the A- and E- 
processors that handles this write data/address 
pairing as one of its tasks. 

The EAQ can also be used to pass data to the 
A-processor that is not stored into memory, but 
which is used for address calculation, for 
example. In this case, an instruction in the A- 
processor that reads from the EAQ must wait for 
the WAQ to be empty before it issues. Upon 
issuing it reads and removes the first element 
from the EAQ. In some instances it might be 
desirable to perform duplicate calculations in the 
two processors to avoid having the A-processor 
wait for results from the E-processor. 

When producing software for a DAE 
architecture, the E- and A-processor programs have 
to be carefully coordinated so that data is placed 
into and taken out of the two data transmission 
queues in correct sequence. Each group of 
instructions is constrained to issue in sequence, 
but the two sequences may "slip“ with respect to 
each other. In many cases, the accessing stream 
rushes ahead of the execute stream resulting in 
significantly less memory fetch delay. 

Examples and preliminary performance 
comparisons given here are made with respect to a 
simplified CRAY-l-like scalar architecture. The 
CRAY-1 was chosen because: 

1) The emphasis here is on high performance 
processors; the CRAY-1 represents the state- 
of-art in high performance scalar 
architecture and implementation. 

2) The CRAY-1 has an instruction set that to 
some extent separates operand access and 
execution; this makes it easier to define and 
produce code for a comparable DAE 
architecture. 
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3) The CRAy-1 is a very straightforward design 
and instruction timings are predictable and 
relatively easy to calculate. 

-F+%is 
Fig. 2a is one of the 14 Lawrence 

Loops (HYDRO EXCERPT) orginally 
written to benchmark scalar performance 
C81. Fig. 2b is a "compilation" onto a 
stylized CRAY-l-like architecture. The 
scalar registers are labelled X0, Xl, . . . and 
there is only one set of scalar registers 
(instead of S and T registers in the CRAY- 
1). The address registers are labelled AO, 
Al, A2, . . . . and there are no B registers. 
In Fig. 2, registers X0, Xl, AO, and Al.are 
ri;ici,u.ed since they FoTllth:;ter be given 

meaning. reason the 
conditional branch (JAM) is assumed to use 
register A7 rather than AO. The compiled 
code is very similar to CRAY Assembly 
Language with arrows inserted for 
readability. Actual CRAY FORTRAN compiler 
output (with the vectorizer turned off) was 
used as a guide, so that the level of 
optimization and scheduling is what can be 
expected from a state-of-the-art optimizing 
compiler. For example, the addition of Q 
in the loop has been optimized away because Q 
= 0.0. Register allocation and handling of 
loop and index variables have been changed 
slightly to accomodate later examples. 

Fig. 2c contains the A and E-programs for the 
straight-line section of code making up the 
loop. An example with branch instructions is 
deferred until branch 
discussed. Performance 
still later until queue 
discussed. 

instructions have been 
comparisons are deferred 
implementations have been 

q = 0.0 
Do1 k= 1,400 

1 x(k) = q + y(k) * (r * z(ktl0) + t l z(k+ll)) 

Fig. 2a. Lawrence Livermore Loop 1 (HYDRO 
EXCERPT) 

A7 + -400 
A2 + 0 
A3 + 1 
X2 + r 
x5 + t 

loop: x3 + 2 + 10, A2 
x7 f 2 t 11, A2 
x4 + x2 *f x3 
x3 + x5 *f x7 
x7 + y. A2 
X6 + X3 +f X4 
X4 + X7 *f X6 
A7 + A7 + 1 
x, A2 + X4 
A2 + A2 + A3 
JAM loop 
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negative loop count 
initialize index 
index increment 
load loop invariants 
into registers 
load z(ktl0) 
load z(k+llj 
r*z(ktlO)-flt. mult. 
t * z(k+ll) 
load y(k) 
r*z(x:l;);;;g\k+ll)) 
y(k) a 
increment loop counter 
store into x(k) 
increment index 
Branch if A7 < 0 

Access Execute 

. 
AEQ + z + 10, A2 X4 + X2 *f AEQ 
AEQ + z + 11, A2 X3 + X5 *f AEQ 
AEQ+y, A2 X6 + X3 +f X4 
A7 + A7 t 1 EAQ + AEQ *f X6 
x, A2 + EAQ . 
A2 l A2t A3 . 

Fig. 2c. Access and execute programs for 
straight-line section of loop 

3. Handling Memory Stores 

As mentioned earlier, memory addresses for 
stores may be computed well in advance of when the 
data is available. These addresses are held in 
the WAQ, and as store data is passed over the EAQ, 
it is removed by the A-processor and lined up with 
its address in the WAQ before being sent to 
memory. The issuing of stores before data is 
available is an important factor in improving 
performance, because it allows load instructions 
to be issued without waiting for previous store 
instructions. 

A problem that arises, however, is that a 
load instruction might use the same memory 
location (address) as a previously issued, but not 
yet completed, store. The solution in [7] is to 
provide the progrannner with interlocks to hold 
stores from issuing until data is available when 
there is any danger of a load bypassing a store to 
the same location. 

An alternative, but slightly more expensive, 
solution that relieves the prograimner (or 
compiler) of inserting interlocks is to do an 
associative compare of each newly issued load 
address with all the addresses in the WAQ. If 
there is a match, then the load should be held 
(and all subsequent loads should be held, possibly 
bv blockina their issue1 until the match condition 
g'bes away1 This associative compare would be a 
limiting factor on the size of the WAQ, but a size 
of 8 - 16 addresses seems feasible. Study of the 
performance impact of the WAQ length is being 
undertaken. 

4. Conditional Branch Instructions 

In order for the A- and E-processors to track 
each other, they must be able to coordinate 
conditional jumps or branches. It is proposed 
that FIFO queues also be used for this purpose. 
These are the E to A Branch Queue (EABQ) and A to 
E Branch Queue (AEBQ) in Fig. 1. 

Either processor could conceivably have the 
data necessary to decide a conditional branch. 

Fig. 2b. Compilation onto 
architecture 

CRAY-l-like 

233 



Consequently, each processor has a set of 
conditional branch instructions that use data 
residing within it. There is also a "Branch From 
Queue" (BFQ) instruction that is conditional on 
the branch outcome at the head of the branch queue 
coming from the opposite processor. When a 
processor determines a conditional branch outcome. 
it places it on the tail of the branch queue to 
the opposite processor. Thus conditional branches 
appear .in the two processors as complementary 
pairs. If a conditional branch in the A-processor 
uses its own internal data, the conditional branch 
in the E-processor is a BFQ, and vice versa. 

For performance reasons, it is desirable for 
the A-processor to detenine as many of the 
conditional branches as possible. This reduces 
dependency on the E-processor and allows the A- 
processor to run ahead. Furthermore, if the A- 
processor is running ahead of the E-processor, 
branch outcomes in the AEBQ can be used by the 
instruction fetch .hardware in the E-processor to 
reduce or eliminate instruction fetch delays 
related to conditional branches, i.e. it is as if _.-_-- 
the E-processor observes unconditonal branches 
rather than conditional ones. Often, as when a 
loop counter is also used as an array index, it 
happens naturally that the A-processor determines 
conditional branches. 

5. Queue Architecture and Implementation 

Thus far, the E- and A-processors have 
cormnunicated via EAQ and AEQ which are explicit 
architectural elements. An architecturally 
cleaner alternative is to make some of the general 
purpose registers the queue heads and tails. For 
example, in the A-processor, A0 could be 
designated the head of the EAQ, and Al the tail of 
the AEQ. Similarly, in the E-processor, X0 could 
be the head of the AEQ. and Xl the tail of the 
W. In this way, no special instructions or 
addressing modes are needed to access the queues, 
they can be referred to just as registers are. 

It might be convenient to give a processor 
access to the top two (or more) elements of a 
queue, as when the top two elements of a queue are 
both operands for an add or multiply. In this 
case, one could designate separate registers for 
each position in the queue to be accessed. For 
example, X0 and Xl could be the first two elements 
in the AEQ, with X2 being the tail of the EAQ. 
The instruction X2 + X0 t Xl adds the first two 
members of the AEQ and returns the result on the 
EAQ.' In the remainder of this paper, however, we 
give access only to the element at the head of a 
queue and use the register assignments as given in 
the previous paragraph. 

The use of registers as queue heads and tails 
also suggests a convenient and efficient 
implementation. In Fig. 3 the AEQ is shown 
implemented as a standard circular buffer held in 
a register file. A "head counter“ points to the 
element of the register file that is at the head 
of the queue. This counter controls the selection 
of head element. 

There is a multiplexer that selects elements 
of the regular X register file, with the output of 
the AEQ file feeding the X0 input to the 
multiplexer. The space for X0 in the regular 
register file is not used; any read from X0 gets 
the element from the top of the queue and 
increments the head counter (modulo the AEQ size). 

The "tail counter" points to the first open 
slot at the tail of the AEQ. A write by the A- 
processor into Al also causes the data to be 
written into the tail position of the AEQ and 
increments the tail counter (modulo the AEQ 
size). When the head counter = tail counter t 1 
(modulo the AEQ size) then the AEQ is considered 
to be full and no more data can be written until 
data is removed and the head counter is incre- 
mented. When the head counter = tail counter, 
then the queue is empty. 

write 1 dl 
write read 

fmm address address 
- 

write 'Y 
-data read 

A- 
Pmt. 

data . , 

w 
register file 

MUX 

‘lwXn 
X \ 

registers 
/ 

'lsxn select, 

1r 
Register No. 

'OmXn 

selected 
data 

Fig. 3. An AEQ implementation 

The design for the EAQ can be virtually 
identical to that for the AEQ. With this 
implementation, the EAQ fits quite naturally into 
the A-processor and the AEQ fits equally well into 
the E-processor. It appears that the time needed 
to access a queue, either for reading or writing, 
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need not be any longer than to BCCeSS a WgiSter 

file as demonstrated by the above implementation. 

BY using the above implementation with 
registers as queue heads and tails, certain 
register writes need to be flagged as illegal. 
Any write by the E processor into X0 would be 
illegal, and any write by the A-processor into A0 
would be illegal. A more complicated structure 
could conceivably be used to allow these writes, 
but there appears to be little advantage to doing 
so. 

The A-processor is allowed to read from Al, 
and the E-processor is allowed to read from Xl. 
These registers hold the most recent elements 
entered into the AEQ and EAQ, respectively (these 
are actually duplicates since separate copies 
reside in the AEQ or EAQ register file). This 
read access is useful if a computed result is to 
be sent to the opposite processor, and is also 
needed for subsequent computation in the 
originating processor. 

This method of using registers as queue heads 
and tails also simplifies testing queues for full 
and empty conditions. In a typical pipelined 
processor, e.g., the CRAY-1, a set of flip-flops, 
one for each register, is used to coordinate the 
reading and writing of registers so that register 
contents are read and updated in correct 
sequence. When an instruction issues that changes 
a register's contents, the corresponding flip-flop 
is set to designate the register as being busy. 
Any subsequent instruction using the register as 
an input or output operand encounters the busy bit 
and is blocked from issuing. After an instruction 
that modifies a register completes, the busy bit 
is cleared, and any instruction blocked by the bit 
is allowed to issue. 

The queues can be checked for empty/full 
status by exactly the same busy bits. If the AEQ 
is empty, for example, the X0 busy bit is set so 
that any instruction needing an operand from the 
AEQ is blocked. Similarly, if the AEQ is full, 
then the Al busy bit is set so that any 
instruction needing to place data into the queue 
is blocked. A similar implementation for the EAQ 
should also be used. 

6. Performance Improvement 

In this section, estimates of possible 
performance improvement with DAE architectures are 
made. These are based on a simplified CRAY-1 
model first discussed in Example 1. To get single 
instruction stream estimates, the 14 Lawrence 
Livermore Loops were first hand compiled onto the 
stylized CRAY-1 scalar architecture. The actual 
object code generated by the CRAY FORTRAN compiler 
was used as a guide so that the level of code 
optimization and scheduling is realistic. The 
simplified architecture has only one level of 
scalar registers (A and X) and it was assumed that 
the number of scalar registers is not a 
limitation, although very seldom are more than 8 
of each type needed. 

Execution times were estimated in clock 
periods, using the number of clock periods 
required by the CRAY-1 for each operation, e.g., a 
load from memory is 11 clock periods, a floating 
add is 6 and a floating multiply is 7 ,[g]. It 
was assumed that there are no memory bank 
conflicts, and that loads can issue on consecutive 
clock periods. Branch instructions are assumed to 
require 5 clock periods for a taken branch, and 2 
clock periods for a not taken one--i.e. optimum 
conditions are assumed. 

The DAE hand compilation was extracted 
directly from the simplified CRAY-1 compilation. 
No further optimization or scheduling was done. 
Here, the same CRAY-1 execution times were used to 
estimate program execution time. Each of the two 
instruction streams was assumed to issue in 
program sequence, just as the simplified CRAY-1 
was. The registers AO, X0, Al, Xl are used as 
queue heads and tails as discussed earlier. 

As shown in secton 5 the time needed to 
communicate through a queue should be no longer 
than to communicate through a register. This was 
assumed in making the time estimates given below. 

Fig. 4a shows the timings for the HYDRO 
EXCERPT loop. The simplifed CRAY-1 takes 39 clock 
periods for each pass through the loop (34 clock 
periods to get through the loop. plus 5 more for 
the taken branch at the bottom). 

Fig. 4b show the timings in clock periods for 
the Access and Execute programs in the OAE 
version. In this program, the A-processor decides 
all the conditional branches and computes all 
addressing information itself. This means the A- 
processor is never delayed by the E-processor. 
The timings given assume complete independence 
between the two loops, although initially the E- 
program will be held up waiting for its first set 
of operands. 

Issue Time 

0 loop: x3 + z + 10, AZ 
1 x7 4 z t 11, AZ 

:: 
x4 + x2 *f x3 
x3 f x5 *f x7 

:9" 
x74 y, A2 
X6 + X3 +f X4 

25 x4 + X7 *f X6 

:l! 
A7 + A7 t 1 
x, A2 + X4 

33 A2 l A2 + A3 
34 JAM loop 

Fig. 4a. Timing estimate for HYDRO 
EXCERPT loop on simplified CRAY-1 
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Issue Time Pccess 

1 oop Al+ z + 10, A2 
Al + z + 11, A2 
Al +y, A2 
A7 + A7 + 1 
X9 A2 + A0 
A2+A2+A3 
JAM loop 

Issue Time Execute 

0 
1 

1: 
15 

loop: x4 l x2 *f x0 
x3 + x5 *f x0 
X6 * X3 +f X4 
Xl + X0 *f X6 
BFQ loop 

Fig. 4b. Timing estimate for HYDRO EXCERPT 
loop on DAE as architecture 

The A-processor can make each pass through 
its loop in 11 clock pferiods (including the 5 for 
the taken branch). The E-processor takes 20 clock 
periods and would lag behind the A-processor. 
Nevertheless, after the first two passes through 
its loop (where there is a wait by the E-processor 
for AEQ) the computation proceeds at the rate of 
20 clock periods per iteration--nearly twice the 
speed of the single stream version. This 
improvement is due entirely to the decoupling of 
access from execution. 

Loop 

: 53 
4” 3’: 
5 65 
6 59 
7 71 
8 178 

1: 8’: 

:: i5 
13 132 
14 147 

Fig. 5. Performance estimates for the 
14 Lawrence Livermore Loops. 
All times are in clock periods 
per loop iteration. 

ii: 38 
:95 

112 
60 
55 
19 
10 

120 
105 

Average 

1.95 
I .96 

T:fl 
1.71 
1.51 
1.29 
1.59 
1.57 

::z 
2.50 
1.10 

All fourteen of the original Lawrence 
Livermore Loops were analyzed as just described. 
The results are given in Fig. 5. The speedup is 
computed by dividing the simplified CRAY-1 clock 
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periods by the DAE architecture clock periods. 
The average speedup is just over 1.7 with some 
speedups as high as 2.5. By using two processors 
a speedup of greater than two is achieved because 
the issue logic in a pipelined processor typically 
spends more time waiting to issue instructions 
than actually issuing them. By using a DAE 
architecture the amount of waiting can be reduced 
considerably. If strictly serial processors were 
used then the maximum speedup would be two. 

7. Single Instruction Stream DAE Architectures 

While the dual instruction stream DAE 
architecture is conceptually simple and leads to 
straightforward implementations it does suffer 
some disadvantages. For the most part these are 
due to the human element--the prograrnner and/or 
compiler writer must deal with two interacting 
instruction streams. The programmer problem can 
be overcome if a high level language is used. 
This forces the work onto the compiler, however, 
and new techniques would probably need to be 
developed. 

A disadvantage of secondary importance is 
that two separate instruction fetch and decode 
units are needed, one for each instruction 
stream. This might also require two ports into 
main memory for instructions rather than one. 
This hardware cost problem can probably be 
partially alleviated by using the same design for 
both instruction fetch/decode units. 

In this section we briefly outline solutions 
to the above problems that 

1) Physically merge the two instruction 
streams into one, or 

2) Conceptually merge the two instruction 
streams for the purpose of programming and 
compilation, but leave them physically 
separate for execution. 

The simplest way to physically achieve a 
single instruction stream is to "interleave" the 
instructions from the two streams. Let al, '12, 

. . . . a, be the sequence of instructions in the A- 

program and let el. e2, . . . . em be the sequence of 

instructions in the E-program. An interleaving 
consists of combining the two sequences lnto one 
so that: 

1) if ai precedes aj in the original A- 

program then ai precedes aj in the 

interleaved sequence, 

2) if ei precedes ej in the original E- 

program then ei precedes ej in the 

interleaved sequence, 

3) if ak and ee are corresponding branch 

instructions in the two sequences, i.e., a 
conditional branch and the corresponding 



branch from queue or two corresponding 
unconditional branches, then a single 
branch instruction is placed in the 
interleaved sequence which satisfies the 
precedence constraints 1) and 2) for both 
ak and et. 

As the two sequences are interleaved, a bit 
can be added to each nonbranch instruction, say as 
part of the opcode, to indicate the stream to 
which it originally belonged. After instructions 
are fetched from memory and decoded, the bit can 
be used to guide instructions to the correct 
processor for execution. Queues in front of the 
orocessors can be used to hold the decoded 
instructions so that the processors retain the 
freedom to "slip" with respect to each other. 
With this scheme, only one program counter is 
required, and the BFQ instructions are no longer 
needed. 

It should be noted, however, that this 
approach reintroduces the one instruction per 
clock period bottleneck in the instruction 
fetch/decode pipeline. These would in some 
instances result in reduced performance. 

Example 2: An interleaving of the HYDRO 
w program is shown in Fig. 6. The 
processor to which each instruction belongs is 
noted in parentheses. This particular 
interleaving places an instruction sending 
data via a queue before the instruction in the 
other processor that receives the data. 

1 oop: Al + z t 10, A2 (A) 
Al + z t 11, A2 (A) 
x4 +. x2 *f X0 (E) 
x3 + x5 *f X0 (E) 
X6 + X3 *f X4 
Al + y, A2 

1;; 

Xl + XO*f X6 
A7 + A7 t 1 Ii/ 
x, A2 + A0 (A) 
A2 + A2 +A3 (4 
J/V4 loop 

Fig. 6. An interleaved instruction stream. 

The simple interleaving of the two 
instruction streams does lfttle to alleviate 
programming and readability problems, The program 
in the example above is rather confusing when one 
iS used to thinking conventional 
architecture. These problems 'cfan be partially 
overcome by inserting "noise" instructions into 
the listing. These noise instructions do not 
result executable code, but make explicit the 
implicit data transfers done via the queues. That 

the "instruction" A0 + Xl can be used to 
%ote the transfer of information via the EAQ. 
This "instruction" would be inserted after the 
instruction in the E-processor that places data 
into Xl and before the instruction in the A- 
processor that uses the data. This added 
"instruction" would be used only for programming 
or. in the case of a compiler, for bookkeeping 

purposes. It would not actually lead to any 
machine code. 

%$@i%& E!%IPT with the A0 + Xl and 
7 shows an interleaving of 

X0 + Al "noise instructions" inserted. 

From the above example, it can be seen that we are 
very close to a conventional architecture which 
uses different registers for addressing and 
functional unit execution, i.e., the CDC and CRAY 
architectures. The only difference is that 
"copies" from X to A and A to X registers are 
restricted to take place among AO, Al, X0, and Xl, 
and all memory loads and stores must take place 
via A registers. 

loop: Al + z + 10. A2 
x0 + Al 
x4 + x2 *f x0 
Al + z + 11, A2 
X0 + Al 
x3 + x5 *f x0 
X6 + X3 +f X4 
Al +y, A2 
X0 c Al 
xl +. X0 *f X6 
A0 + Xl 
x, A2 + A0 
A2+A2+A3 
JAM loop 

(4 
(noise) 
(E) 
(A) 
(noise) 

1:; 
(A) 
(noise) 
(El 
(noise) 
(4 
(A) 

Fig. 7. An interleaved instruction stream 
with noise instructions inserted 
to enhance readability. 

The architecture is now so similar to 
conventional architectures that many standard 
compiler techniques can probably be used. Then 
after compilation, "noise" instructions can be 
removed. If one physical instruction stream is to 
be used, the instructions can easily be "marked" 
with the processor they belong to. 

If two instruction streams are to be used, 
then the compiler can pull apart the two 
instruction streams, with BFQ instructions being 
inserted. 

The above discussion is by no means the last 
word on compilation for DAE architectures. As 
mentioned earlier, for performance reasons, 
dependency of the A-processor or E-processor 
results should be reduced so that the A-processor 
can run ahead of the E-processor. This can often 
be achieved by duplicating calculations in both 
processors. For high performance, a compiler 
would have to have this capability. Furthermore, 
the compiler would have other optimization and 
scheduling problems that differ from those 
encountered in a conventional architecture. It is 
clear that these and other research problems 
remain in the area of compilation for DAE 
architecture. 
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8. Deadlock 

In a OAE architecture, deadlock can occur if 
both the AEQ and EAQ are full and both processors 
are blocked by the full queues, or if both queues 
are empty and both processors are blocked by the 
empty queues. An example of this is shown in Fig. 
8. Here, the queues have once again been made 
explicit to make the problem clearer. Deadlock 
detection and prevention are both important 
problems. Deadlock can be detected by simply 
determining when instruction issue is being 
blocked in both processors due to full or empty 
queues. This should be flagged as a program 
error, and the program should be purged. 

Access Execute -- 

A4 + EAQ X3 + AEQ 
AEQ + A5 EAQ + X2 

Fig. 8. A solution which leads to dead- 
lock: An attempted transfer from 
A5 to X3 and from X2 to A4. 

Deadlock prevention is more complicated, and 
it is beyond the scope of this paper to go into 
detail. Rather, a sufficient condition for 
deadlock-free operation is informally given, and a 
way of achieving this sufficient condition is 
given. 

Consider the dynamic instruction streams as 
they flow through the processors. For each data 
transfer through the EAQ or AEQ, there is an 
instruction in one processor that sends the data 
item, and an instruction in the other processor 
that receives the data item. The instruction that 
sends data item i is called "SEND i," and the 
instruction that receives data item i is called 
"RECEIVE i." 

An interleaving of instructions (Section 7) 
is defined to be proper if the instruction causing 
SEND i precedes the instruction causing RECEIVE i 
for all data transfers i. The interleaving shown 
in Fig. 6 is a proper interleaving. Furthermore, 
a proper interleaving is needed when using the 
method of inserting noise instructions to improve 
readability as shown in Fig. 7. 

It can be shown that if the A- and E-program 
can be properly interleaved then deadlock cannot 
occur. Again, it is beyond the scope of this 
paper to develop the formalism needed for a 
rigorous proof. 

The program in Fig. 7 represents a proper 
interleaving for our HYORO EXCERPT compilation, so 
the program must be deadlock-free. Turning to 
Fig. 8, it can be seen that it is impossible to 
properly interleave the A- and E-programs. To be 
proper. EAQ + X2 must precede A4 + EAQ and AEQ + 
A5 must precede X3 + AEQ. This can not be done 1 
since the definition of an interleaving requires 
that A4 + EAQ must preceed AEQ + A5 and X3 + AEQ 
must preceed EAQ + X2. Therefore the sufficient 
condition given above is not satisfied. 
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9. Conclusions 

It has been shown that DAE Architectures can 
be implemented in ways that minimize programmer 
involvement. It has also been shown that 
considerable performance improvement is possible, 
while using straightforward instruction issue 
methods that are currently in use today. 
Furthermore, the improvement is achieved using 
code that is optimized roughly at the level of 
current compilers. 

OAE architectures are relatively new, and 
many variations are possible. Multiple queues, 
additional processors, vector versions, and VLSI 
implementations are a few examples that deserve 
further study. 
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