
DECOUPLED ACCESS/EXECUTE COMPUTER ARCHITECTURES

James E. Smith

Department of Electrical and Computer Engineering
University of Wisconsin-Madison, Madison, Wisconsin 53706

Abstract

An architecture for improving computer per-
formance is presented and discussed. The main
feature of the architecture is a high degree of ._-.-. -
decoupling between operand access anb execution.
This results in an implementation which has two
separate instruction streams that communicate via
queues. A similar architecture has been
previously proposed for array processors, but in
that context the software is called on to do most
of the coordination and synchronization between
the instruction streams. This paper emphasizes
implementation features that remove this burden
from the programmer. Performance comparisons with
a conventional scalar architecture are given, and
these show that considerable performance gains are
possible.

Single instruction stream versions, both
physical and conceptual, are discussed with the
primary goal of minimizing the differences with
conventional architectures. This would allow
known compilation and programing techniques to be
used. Finally, the problem of deadlock in such a
system is discussed, and one possible solution is
given.

1. Introduction

It has long been known that a practical
impediment to scalar computer performance is that
any straightforward instruction decoding/issuing
scheme has some bottleneck through which
instructions pass at the maximum rate of one per
clock period CU. Furthermore, modern
organizations additionally constrain instructions
to issue in program sequence. Some potential
instruction overlap is' lost because later
instructions that could issue may be be held up
behind an earlier instruction being blocked due to
conflicts. For example, studies by Foster and
Riseman [Z] and Tjaden and Flynn [3] have shown
that average speedups of 1.7 to almost 1.9 times
are possible by issuing instructions out of order
or by allowing multiple instructions to issue at
once. Sophisticated issue methods used in the CDC
6600 [4] and IBM 360/91 [5] were intended to
achieve some of this performance gain, but these
complex issue methods have been abandoned by their
manufacturers, no doubt in large part because any
performance improvement was more than offset by
additional hardware design, debugging, and
maintenance problems.

A second critical constraint on performance
IS time required for processor-memory
communication. Current trends, both in hardware
and software, tend to aggravate the memory
communication problem. In hardware, the trend
toward higher levels of integration has the effect
of increasing the performance impact of all forms
of inter-chip communication, including processor-
memory communication. At the architectural level,
the trend is toward elaborate virtual memory and
protection methods. These tend to slow memory
communication because of the required address
translation and protection checks. The use of
multiprocessors often means that individual
processors must contend for memory resources. In
addition, interconnection structures add delay
both due to their size and additional
contention. Cache memory becomes a less effective
solution in multiprocessor systems due to the
problem of maintaining coherence. At the software
level, facilities for defining elaborate data
types and structures are being developed. This
causes an increase in the number of operations
needed to check types, compute indices, etc. all
of which adds to increased delay when accessing
data. All of the above point to the need for
processors that can diminish the effects of
increased memory communication time.

This paper discussed a new type of processor
architecture which separates its processing into
two parts: access to memory to fetch operands and
store results, and operand execution to produce
the results. By architecturally decoupling data
access from execution, it is possible to construct
implementations that provide much of the
performance b;;rovement offered by complex issuing
methods, without significant design
complexity. In addition, it can allow
considerable memory conunication delay to be
hidden.

The architecture proposed here represents an
evolutionary step, since a similar, but more
restricted, separation of tasks appeared as early
as STRETCH [6], and has been employed to some
degree in several high performance- processors,
including those from IBM. Andahl. CDC and CRAY.
Recently: an array processor, the CSPI MAP 200 [7]
has pushed the degree of access and execution
decoupling beyond that in any of the mainframe
computers mentioned above. The architecture of
the MAP 200, is, of course, directed largely
toward vector or array type calculations. In

0149-7111/82/0000/0112$00.75 0 1982 IEEE

231

addition it has a relatively "bare bones"
architecture, as do other array processors, that
places a great deal of responsibility for resource
scheduling and interlocking on software. The
benefits of a highly decoupled access/execute
architecture 90 beyond array processor
applications, however. The author was
independently studying a virtually identical
decoupling method in the context of high
performance mainframe computers when he became
aware of the MAP 200. As a result of the
viewpoint taken in this study, the methods
discussed here reflect a philosophy of reducing
prografmier responsibility (and compiler
complexity) while achieving improved performance.

This paper begins with an overview of
decoupled access/execute architectures. Then some
specific implementation issues are discussed.
These are handling of stores, conditional
branches, and queues. All three of these are
handled in new ways that remove the burden of
synchronization and interlocking from software and
place it in the hardware. Next, results of a
performance analysis of the 14 Lawrence Livermore
Loops [B] is given. This is followed by a
discussion of ways that the two instruction
streams of a decoupled access/execute architecture
can be merged while retaining most, if not all,
the performance improvement. Finally, a brief
discussion of deadlock, its causes, detection and
prevention is given.

2. Architecture Overview

simplest
acces$exe,t:', (DAE)

form, a decoupled
architecture is separated

into two major functional units, each with its own
instruction stream (Fig. 1). These are the Access
Processor or A-processor and the Execute Processor
or E-processor. Each unit has its own distinct
set of registers, in the A-processor these are
denoted as registers AO, Al, in the E-
processor they are X0, Xl,

The two processors execute separate programs
with similar structure, but which perform two
different functions. The A-processor performs all
operations necessary for transferring data to and
from main memory. That is, it does all address
computation and performs all memory read and write
requests. It would also contain the operand
cache, if the system has one. Oata fetched from
memory is either used internally in the A-
processor, or is placed in a FIFO queue and is
sent to the E-processor. This is the Access to
Execute Queue, or AEQ.The E-processor removes
operands from the AEQ as it needs them and places
any results into a second FIFO queue, the Execute
to Access Queue or EAQ.

The A-processor issues memory stores as soon
as it computes the store address; it does not wait
until the store data is received via the EAQ.
Store addresses awaiting data are held internally
in the Write Address Queue or WAQ. As data
arrives at the A-processor via the EAQ, it is
paired with the first address in the WAQ and Is

I Access
Processor

A 1 register
file

Fig. 1. Conceptual

Execute
Processor

DAE Architecture

sent to memory. This pairing takes place
automatically as the data becomes available. It
should be noted that in [7] there is a third
functional unit separate from the A- and E-
processors that handles this write data/address
pairing as one of its tasks.

The EAQ can also be used to pass data to the
A-processor that is not stored into memory, but
which is used for address calculation, for
example. In this case, an instruction in the A-
processor that reads from the EAQ must wait for
the WAQ to be empty before it issues. Upon
issuing it reads and removes the first element
from the EAQ. In some instances it might be
desirable to perform duplicate calculations in the
two processors to avoid having the A-processor
wait for results from the E-processor.

When producing software for a DAE
architecture, the E- and A-processor programs have
to be carefully coordinated so that data is placed
into and taken out of the two data transmission
queues in correct sequence. Each group of
instructions is constrained to issue in sequence,
but the two sequences may "slip“ with respect to
each other. In many cases, the accessing stream
rushes ahead of the execute stream resulting in
significantly less memory fetch delay.

Examples and preliminary performance
comparisons given here are made with respect to a
simplified CRAY-l-like scalar architecture. The
CRAY-1 was chosen because:

1) The emphasis here is on high performance
processors; the CRAY-1 represents the state-
of-art in high performance scalar
architecture and implementation.

2) The CRAY-1 has an instruction set that to
some extent separates operand access and
execution; this makes it easier to define and
produce code for a comparable DAE
architecture.

232

3) The CRAy-1 is a very straightforward design
and instruction timings are predictable and
relatively easy to calculate.

-F+%is
Fig. 2a is one of the 14 Lawrence

Loops (HYDRO EXCERPT) orginally
written to benchmark scalar performance
C81. Fig. 2b is a "compilation" onto a
stylized CRAY-l-like architecture. The
scalar registers are labelled X0, Xl, . . . and
there is only one set of scalar registers
(instead of S and T registers in the CRAY-
1). The address registers are labelled AO,
Al, A2, and there are no B registers.
In Fig. 2, registers X0, Xl, AO, and Al.are
ri;ici,u.ed since they FoTllth:;ter be given

meaning. reason the
conditional branch (JAM) is assumed to use
register A7 rather than AO. The compiled
code is very similar to CRAY Assembly
Language with arrows inserted for
readability. Actual CRAY FORTRAN compiler
output (with the vectorizer turned off) was
used as a guide, so that the level of
optimization and scheduling is what can be
expected from a state-of-the-art optimizing
compiler. For example, the addition of Q
in the loop has been optimized away because Q
= 0.0. Register allocation and handling of
loop and index variables have been changed
slightly to accomodate later examples.

Fig. 2c contains the A and E-programs for the
straight-line section of code making up the
loop. An example with branch instructions is
deferred until branch
discussed. Performance
still later until queue
discussed.

instructions have been
comparisons are deferred
implementations have been

q = 0.0
Do1 k= 1,400

1 x(k) = q + y(k) * (r * z(ktl0) + t l z(k+ll))

Fig. 2a. Lawrence Livermore Loop 1 (HYDRO
EXCERPT)

A7 + -400
A2 + 0
A3 + 1
X2 + r
x5 + t

loop: x3 + 2 + 10, A2
x7 f 2 t 11, A2
x4 + x2 *f x3
x3 + x5 *f x7
x7 + y. A2
X6 + X3 +f X4
X4 + X7 *f X6
A7 + A7 + 1
x, A2 + X4
A2 + A2 + A3
JAM loop

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

negative loop count
initialize index
index increment
load loop invariants
into registers
load z(ktl0)
load z(k+llj
r*z(ktlO)-flt. mult.
t * z(k+ll)
load y(k)
r*z(x:l;);;;g\k+ll))
y(k) a
increment loop counter
store into x(k)
increment index
Branch if A7 < 0

Access Execute

.
AEQ + z + 10, A2 X4 + X2 *f AEQ
AEQ + z + 11, A2 X3 + X5 *f AEQ
AEQ+y, A2 X6 + X3 +f X4
A7 + A7 t 1 EAQ + AEQ *f X6
x, A2 + EAQ .
A2 l A2t A3 .

Fig. 2c. Access and execute programs for
straight-line section of loop

3. Handling Memory Stores

As mentioned earlier, memory addresses for
stores may be computed well in advance of when the
data is available. These addresses are held in
the WAQ, and as store data is passed over the EAQ,
it is removed by the A-processor and lined up with
its address in the WAQ before being sent to
memory. The issuing of stores before data is
available is an important factor in improving
performance, because it allows load instructions
to be issued without waiting for previous store
instructions.

A problem that arises, however, is that a
load instruction might use the same memory
location (address) as a previously issued, but not
yet completed, store. The solution in [7] is to
provide the progrannner with interlocks to hold
stores from issuing until data is available when
there is any danger of a load bypassing a store to
the same location.

An alternative, but slightly more expensive,
solution that relieves the prograimner (or
compiler) of inserting interlocks is to do an
associative compare of each newly issued load
address with all the addresses in the WAQ. If
there is a match, then the load should be held
(and all subsequent loads should be held, possibly
bv blockina their issue1 until the match condition
g'bes away1 This associative compare would be a
limiting factor on the size of the WAQ, but a size
of 8 - 16 addresses seems feasible. Study of the
performance impact of the WAQ length is being
undertaken.

4. Conditional Branch Instructions

In order for the A- and E-processors to track
each other, they must be able to coordinate
conditional jumps or branches. It is proposed
that FIFO queues also be used for this purpose.
These are the E to A Branch Queue (EABQ) and A to
E Branch Queue (AEBQ) in Fig. 1.

Either processor could conceivably have the
data necessary to decide a conditional branch.

Fig. 2b. Compilation onto
architecture

CRAY-l-like

233

Consequently, each processor has a set of
conditional branch instructions that use data
residing within it. There is also a "Branch From
Queue" (BFQ) instruction that is conditional on
the branch outcome at the head of the branch queue
coming from the opposite processor. When a
processor determines a conditional branch outcome.
it places it on the tail of the branch queue to
the opposite processor. Thus conditional branches
appear .in the two processors as complementary
pairs. If a conditional branch in the A-processor
uses its own internal data, the conditional branch
in the E-processor is a BFQ, and vice versa.

For performance reasons, it is desirable for
the A-processor to detenine as many of the
conditional branches as possible. This reduces
dependency on the E-processor and allows the A-
processor to run ahead. Furthermore, if the A-
processor is running ahead of the E-processor,
branch outcomes in the AEBQ can be used by the
instruction fetch .hardware in the E-processor to
reduce or eliminate instruction fetch delays
related to conditional branches, i.e. it is as if _.-_--
the E-processor observes unconditonal branches
rather than conditional ones. Often, as when a
loop counter is also used as an array index, it
happens naturally that the A-processor determines
conditional branches.

5. Queue Architecture and Implementation

Thus far, the E- and A-processors have
cormnunicated via EAQ and AEQ which are explicit
architectural elements. An architecturally
cleaner alternative is to make some of the general
purpose registers the queue heads and tails. For
example, in the A-processor, A0 could be
designated the head of the EAQ, and Al the tail of
the AEQ. Similarly, in the E-processor, X0 could
be the head of the AEQ. and Xl the tail of the
W. In this way, no special instructions or
addressing modes are needed to access the queues,
they can be referred to just as registers are.

It might be convenient to give a processor
access to the top two (or more) elements of a
queue, as when the top two elements of a queue are
both operands for an add or multiply. In this
case, one could designate separate registers for
each position in the queue to be accessed. For
example, X0 and Xl could be the first two elements
in the AEQ, with X2 being the tail of the EAQ.
The instruction X2 + X0 t Xl adds the first two
members of the AEQ and returns the result on the
EAQ.' In the remainder of this paper, however, we
give access only to the element at the head of a
queue and use the register assignments as given in
the previous paragraph.

The use of registers as queue heads and tails
also suggests a convenient and efficient
implementation. In Fig. 3 the AEQ is shown
implemented as a standard circular buffer held in
a register file. A "head counter“ points to the
element of the register file that is at the head
of the queue. This counter controls the selection
of head element.

There is a multiplexer that selects elements
of the regular X register file, with the output of
the AEQ file feeding the X0 input to the
multiplexer. The space for X0 in the regular
register file is not used; any read from X0 gets
the element from the top of the queue and
increments the head counter (modulo the AEQ size).

The "tail counter" points to the first open
slot at the tail of the AEQ. A write by the A-
processor into Al also causes the data to be
written into the tail position of the AEQ and
increments the tail counter (modulo the AEQ
size). When the head counter = tail counter t 1
(modulo the AEQ size) then the AEQ is considered
to be full and no more data can be written until
data is removed and the head counter is incre-
mented. When the head counter = tail counter,
then the queue is empty.

write 1 dl
write read

fmm address address
-

write 'Y
-data read

A-
Pmt.

data . ,

w
register file

MUX

‘lwXn
X \

registers
/

'lsxn select,

1r
Register No.

'OmXn

selected
data

Fig. 3. An AEQ implementation

The design for the EAQ can be virtually
identical to that for the AEQ. With this
implementation, the EAQ fits quite naturally into
the A-processor and the AEQ fits equally well into
the E-processor. It appears that the time needed
to access a queue, either for reading or writing,

234

need not be any longer than to BCCeSS a WgiSter

file as demonstrated by the above implementation.

BY using the above implementation with
registers as queue heads and tails, certain
register writes need to be flagged as illegal.
Any write by the E processor into X0 would be
illegal, and any write by the A-processor into A0
would be illegal. A more complicated structure
could conceivably be used to allow these writes,
but there appears to be little advantage to doing
so.

The A-processor is allowed to read from Al,
and the E-processor is allowed to read from Xl.
These registers hold the most recent elements
entered into the AEQ and EAQ, respectively (these
are actually duplicates since separate copies
reside in the AEQ or EAQ register file). This
read access is useful if a computed result is to
be sent to the opposite processor, and is also
needed for subsequent computation in the
originating processor.

This method of using registers as queue heads
and tails also simplifies testing queues for full
and empty conditions. In a typical pipelined
processor, e.g., the CRAY-1, a set of flip-flops,
one for each register, is used to coordinate the
reading and writing of registers so that register
contents are read and updated in correct
sequence. When an instruction issues that changes
a register's contents, the corresponding flip-flop
is set to designate the register as being busy.
Any subsequent instruction using the register as
an input or output operand encounters the busy bit
and is blocked from issuing. After an instruction
that modifies a register completes, the busy bit
is cleared, and any instruction blocked by the bit
is allowed to issue.

The queues can be checked for empty/full
status by exactly the same busy bits. If the AEQ
is empty, for example, the X0 busy bit is set so
that any instruction needing an operand from the
AEQ is blocked. Similarly, if the AEQ is full,
then the Al busy bit is set so that any
instruction needing to place data into the queue
is blocked. A similar implementation for the EAQ
should also be used.

6. Performance Improvement

In this section, estimates of possible
performance improvement with DAE architectures are
made. These are based on a simplified CRAY-1
model first discussed in Example 1. To get single
instruction stream estimates, the 14 Lawrence
Livermore Loops were first hand compiled onto the
stylized CRAY-1 scalar architecture. The actual
object code generated by the CRAY FORTRAN compiler
was used as a guide so that the level of code
optimization and scheduling is realistic. The
simplified architecture has only one level of
scalar registers (A and X) and it was assumed that
the number of scalar registers is not a
limitation, although very seldom are more than 8
of each type needed.

Execution times were estimated in clock
periods, using the number of clock periods
required by the CRAY-1 for each operation, e.g., a
load from memory is 11 clock periods, a floating
add is 6 and a floating multiply is 7 ,[g]. It
was assumed that there are no memory bank
conflicts, and that loads can issue on consecutive
clock periods. Branch instructions are assumed to
require 5 clock periods for a taken branch, and 2
clock periods for a not taken one--i.e. optimum
conditions are assumed.

The DAE hand compilation was extracted
directly from the simplified CRAY-1 compilation.
No further optimization or scheduling was done.
Here, the same CRAY-1 execution times were used to
estimate program execution time. Each of the two
instruction streams was assumed to issue in
program sequence, just as the simplified CRAY-1
was. The registers AO, X0, Al, Xl are used as
queue heads and tails as discussed earlier.

As shown in secton 5 the time needed to
communicate through a queue should be no longer
than to communicate through a register. This was
assumed in making the time estimates given below.

Fig. 4a shows the timings for the HYDRO
EXCERPT loop. The simplifed CRAY-1 takes 39 clock
periods for each pass through the loop (34 clock
periods to get through the loop. plus 5 more for
the taken branch at the bottom).

Fig. 4b show the timings in clock periods for
the Access and Execute programs in the OAE
version. In this program, the A-processor decides
all the conditional branches and computes all
addressing information itself. This means the A-
processor is never delayed by the E-processor.
The timings given assume complete independence
between the two loops, although initially the E-
program will be held up waiting for its first set
of operands.

Issue Time

0 loop: x3 + z + 10, AZ
1 x7 4 z t 11, AZ

::
x4 + x2 *f x3
x3 f x5 *f x7

:9"
x74 y, A2
X6 + X3 +f X4

25 x4 + X7 *f X6

:l!
A7 + A7 t 1
x, A2 + X4

33 A2 l A2 + A3
34 JAM loop

Fig. 4a. Timing estimate for HYDRO
EXCERPT loop on simplified CRAY-1

235

Issue Time Pccess

1 oop Al+ z + 10, A2
Al + z + 11, A2
Al +y, A2
A7 + A7 + 1
X9 A2 + A0
A2+A2+A3
JAM loop

Issue Time Execute

0
1

1:
15

loop: x4 l x2 *f x0
x3 + x5 *f x0
X6 * X3 +f X4
Xl + X0 *f X6
BFQ loop

Fig. 4b. Timing estimate for HYDRO EXCERPT
loop on DAE as architecture

The A-processor can make each pass through
its loop in 11 clock pferiods (including the 5 for
the taken branch). The E-processor takes 20 clock
periods and would lag behind the A-processor.
Nevertheless, after the first two passes through
its loop (where there is a wait by the E-processor
for AEQ) the computation proceeds at the rate of
20 clock periods per iteration--nearly twice the
speed of the single stream version. This
improvement is due entirely to the decoupling of
access from execution.

Loop

: 53
4” 3’:
5 65
6 59
7 71
8 178

1: 8’:

:: i5
13 132
14 147

Fig. 5. Performance estimates for the
14 Lawrence Livermore Loops.
All times are in clock periods
per loop iteration.

ii: 38
:95

112
60
55
19
10

120
105

Average

1.95
I .96

T:fl
1.71
1.51
1.29
1.59
1.57

::z
2.50
1.10

All fourteen of the original Lawrence
Livermore Loops were analyzed as just described.
The results are given in Fig. 5. The speedup is
computed by dividing the simplified CRAY-1 clock

236

periods by the DAE architecture clock periods.
The average speedup is just over 1.7 with some
speedups as high as 2.5. By using two processors
a speedup of greater than two is achieved because
the issue logic in a pipelined processor typically
spends more time waiting to issue instructions
than actually issuing them. By using a DAE
architecture the amount of waiting can be reduced
considerably. If strictly serial processors were
used then the maximum speedup would be two.

7. Single Instruction Stream DAE Architectures

While the dual instruction stream DAE
architecture is conceptually simple and leads to
straightforward implementations it does suffer
some disadvantages. For the most part these are
due to the human element--the prograrnner and/or
compiler writer must deal with two interacting
instruction streams. The programmer problem can
be overcome if a high level language is used.
This forces the work onto the compiler, however,
and new techniques would probably need to be
developed.

A disadvantage of secondary importance is
that two separate instruction fetch and decode
units are needed, one for each instruction
stream. This might also require two ports into
main memory for instructions rather than one.
This hardware cost problem can probably be
partially alleviated by using the same design for
both instruction fetch/decode units.

In this section we briefly outline solutions
to the above problems that

1) Physically merge the two instruction
streams into one, or

2) Conceptually merge the two instruction
streams for the purpose of programming and
compilation, but leave them physically
separate for execution.

The simplest way to physically achieve a
single instruction stream is to "interleave" the
instructions from the two streams. Let al, '12,

. . . . a, be the sequence of instructions in the A-

program and let el. e2, em be the sequence of

instructions in the E-program. An interleaving
consists of combining the two sequences lnto one
so that:

1) if ai precedes aj in the original A-

program then ai precedes aj in the

interleaved sequence,

2) if ei precedes ej in the original E-

program then ei precedes ej in the

interleaved sequence,

3) if ak and ee are corresponding branch

instructions in the two sequences, i.e., a
conditional branch and the corresponding

branch from queue or two corresponding
unconditional branches, then a single
branch instruction is placed in the
interleaved sequence which satisfies the
precedence constraints 1) and 2) for both
ak and et.

As the two sequences are interleaved, a bit
can be added to each nonbranch instruction, say as
part of the opcode, to indicate the stream to
which it originally belonged. After instructions
are fetched from memory and decoded, the bit can
be used to guide instructions to the correct
processor for execution. Queues in front of the
orocessors can be used to hold the decoded
instructions so that the processors retain the
freedom to "slip" with respect to each other.
With this scheme, only one program counter is
required, and the BFQ instructions are no longer
needed.

It should be noted, however, that this
approach reintroduces the one instruction per
clock period bottleneck in the instruction
fetch/decode pipeline. These would in some
instances result in reduced performance.

Example 2: An interleaving of the HYDRO
w program is shown in Fig. 6. The
processor to which each instruction belongs is
noted in parentheses. This particular
interleaving places an instruction sending
data via a queue before the instruction in the
other processor that receives the data.

1 oop: Al + z t 10, A2 (A)
Al + z t 11, A2 (A)
x4 +. x2 *f X0 (E)
x3 + x5 *f X0 (E)
X6 + X3 *f X4
Al + y, A2

1;;

Xl + XO*f X6
A7 + A7 t 1 Ii/
x, A2 + A0 (A)
A2 + A2 +A3 (4
J/V4 loop

Fig. 6. An interleaved instruction stream.

The simple interleaving of the two
instruction streams does lfttle to alleviate
programming and readability problems, The program
in the example above is rather confusing when one
iS used to thinking conventional
architecture. These problems 'cfan be partially
overcome by inserting "noise" instructions into
the listing. These noise instructions do not
result executable code, but make explicit the
implicit data transfers done via the queues. That

the "instruction" A0 + Xl can be used to
%ote the transfer of information via the EAQ.
This "instruction" would be inserted after the
instruction in the E-processor that places data
into Xl and before the instruction in the A-
processor that uses the data. This added
"instruction" would be used only for programming
or. in the case of a compiler, for bookkeeping

purposes. It would not actually lead to any
machine code.

%$@i%& E!%IPT with the A0 + Xl and
7 shows an interleaving of

X0 + Al "noise instructions" inserted.

From the above example, it can be seen that we are
very close to a conventional architecture which
uses different registers for addressing and
functional unit execution, i.e., the CDC and CRAY
architectures. The only difference is that
"copies" from X to A and A to X registers are
restricted to take place among AO, Al, X0, and Xl,
and all memory loads and stores must take place
via A registers.

loop: Al + z + 10. A2
x0 + Al
x4 + x2 *f x0
Al + z + 11, A2
X0 + Al
x3 + x5 *f x0
X6 + X3 +f X4
Al +y, A2
X0 c Al
xl +. X0 *f X6
A0 + Xl
x, A2 + A0
A2+A2+A3
JAM loop

(4
(noise)
(E)
(A)
(noise)

1:;
(A)
(noise)
(El
(noise)
(4
(A)

Fig. 7. An interleaved instruction stream
with noise instructions inserted
to enhance readability.

The architecture is now so similar to
conventional architectures that many standard
compiler techniques can probably be used. Then
after compilation, "noise" instructions can be
removed. If one physical instruction stream is to
be used, the instructions can easily be "marked"
with the processor they belong to.

If two instruction streams are to be used,
then the compiler can pull apart the two
instruction streams, with BFQ instructions being
inserted.

The above discussion is by no means the last
word on compilation for DAE architectures. As
mentioned earlier, for performance reasons,
dependency of the A-processor or E-processor
results should be reduced so that the A-processor
can run ahead of the E-processor. This can often
be achieved by duplicating calculations in both
processors. For high performance, a compiler
would have to have this capability. Furthermore,
the compiler would have other optimization and
scheduling problems that differ from those
encountered in a conventional architecture. It is
clear that these and other research problems
remain in the area of compilation for DAE
architecture.

237

8. Deadlock

In a OAE architecture, deadlock can occur if
both the AEQ and EAQ are full and both processors
are blocked by the full queues, or if both queues
are empty and both processors are blocked by the
empty queues. An example of this is shown in Fig.
8. Here, the queues have once again been made
explicit to make the problem clearer. Deadlock
detection and prevention are both important
problems. Deadlock can be detected by simply
determining when instruction issue is being
blocked in both processors due to full or empty
queues. This should be flagged as a program
error, and the program should be purged.

Access Execute --

A4 + EAQ X3 + AEQ
AEQ + A5 EAQ + X2

Fig. 8. A solution which leads to dead-
lock: An attempted transfer from
A5 to X3 and from X2 to A4.

Deadlock prevention is more complicated, and
it is beyond the scope of this paper to go into
detail. Rather, a sufficient condition for
deadlock-free operation is informally given, and a
way of achieving this sufficient condition is
given.

Consider the dynamic instruction streams as
they flow through the processors. For each data
transfer through the EAQ or AEQ, there is an
instruction in one processor that sends the data
item, and an instruction in the other processor
that receives the data item. The instruction that
sends data item i is called "SEND i," and the
instruction that receives data item i is called
"RECEIVE i."

An interleaving of instructions (Section 7)
is defined to be proper if the instruction causing
SEND i precedes the instruction causing RECEIVE i
for all data transfers i. The interleaving shown
in Fig. 6 is a proper interleaving. Furthermore,
a proper interleaving is needed when using the
method of inserting noise instructions to improve
readability as shown in Fig. 7.

It can be shown that if the A- and E-program
can be properly interleaved then deadlock cannot
occur. Again, it is beyond the scope of this
paper to develop the formalism needed for a
rigorous proof.

The program in Fig. 7 represents a proper
interleaving for our HYORO EXCERPT compilation, so
the program must be deadlock-free. Turning to
Fig. 8, it can be seen that it is impossible to
properly interleave the A- and E-programs. To be
proper. EAQ + X2 must precede A4 + EAQ and AEQ +
A5 must precede X3 + AEQ. This can not be done 1
since the definition of an interleaving requires
that A4 + EAQ must preceed AEQ + A5 and X3 + AEQ
must preceed EAQ + X2. Therefore the sufficient
condition given above is not satisfied.

238

9. Conclusions

It has been shown that DAE Architectures can
be implemented in ways that minimize programmer
involvement. It has also been shown that
considerable performance improvement is possible,
while using straightforward instruction issue
methods that are currently in use today.
Furthermore, the improvement is achieved using
code that is optimized roughly at the level of
current compilers.

OAE architectures are relatively new, and
many variations are possible. Multiple queues,
additional processors, vector versions, and VLSI
implementations are a few examples that deserve
further study.

Acknowledgement

The author would like to thank David Anderson
for his assistance in obtaining CRAY-1 object
listings for the Livermore Loops.

References

[I] Flynn, M. J., "Very High-Speed Computing
Systems," Proceedings of the IEEE, Vol 54, No.
12, pp. I9DI-1909, December 1966.

[2] Riseman, E. M. and C. C. Foster, "Percolation
of Code to Enhance Parallel Dispatching and
Execution," IEEE Trans. on Computers, Vol. C-
21, No. 12, pp. 1411-1415, December 1972.

[S] Tjaden, G. S. and M. J. Flynn, "Detection and
Parallel Execution of Independent
Instructions," IEEE Trans. on Computers, Vol.
c-19, NO. 10, pp. 889-895, October 1970.

[4] Thornton, J. E., Design of a Computer - The
Control Data 6600, Scott, koresman and C o.,
Glenview, IL, 1970.

c51

161

c71

PI

II91

Anderson, D. W., F. J. Sparacio, and R. M.
Tomasulo, "The IBM, System/360 Model 91:
Machine Philosophy and Instruction Handling,"
IBM Journal of Research and Development, pp.
8-24, January 1967

Bucholz, W., ed., Planning a Computer System,
McGraw-Hill, New York, 1962.

Cohler, E. U. and J. E. Storer, "Functionally
Parallel Architecture for Array Processors,'
Computer, Vol. 14, No. 9, pp. 28-36, September
f981.

McMahon, F. H., "FORTRAN CPU Performance
Analysis," Lawrence Livermore Laboratories,
1972.

CRAY-1 Computer Systems, Hardware Reference
Manual, Cray Research, Inc., Chippewa Falls,
wI.79.

