
How does an SMT work?

• What is private to each thread?
– Context:

• PC
• Logical registers (RAT)
• Address space (possibly shared)

– Instruction buffer
– Retirement (reorder)



SMT how does it work

• What is shared?
– Functional units
– Issue buffer
– Reservation stations/physical registers
– Branch predictor
– Maybies:

• Cache
• TLB
• Store buffer



What makes SMT a ‘good idea’?

• Optimal utilization of functional units
• Dynamic sharing of resources
• Throughput of instructions
• Flexible between singled and multithreaded 

performance
• +1 thread is “Free”



What is a CMP?

• Chip multiprocessor
• Bunch of processors on one die
• What do you share?

– External bus
– L2 cache

• What do you not share?
– Functional units/cores/L1 caches
– everything else



What makes CMP a ‘good idea’?

• Complexity control
• Clock distribution
• Scalability (some kinds)
• If you have a lot of threads… processses…

– Webservers, databases, etc.



Where does all the silicon go 
anyway in a superscalar?

• Control logic
• Reservation stations
• Clock distribution
• Interconnect
• Cache
• Functional unit (5-6% today)





What are the limits of SMT?

• 8
• 4
• Larger # threads => more parallelism

– => more control logic
– => more complexity
– => more wire delay

• External ports to data caches are a problem
– Can have a private cache to handle this



Does there have to be a distinction?

• Sharing => complexity
– Gain: improved resource utilization

• Partitioning => simplification


