How to speak pigeon

- FLR = register
- CDB = common data bus
- *sink* = destination register
- FLB/SDB = reservation stations
- FLOS = processor
What was wrong with score-boarding?

- Instruction can stall
- Waiting too long for operands
- Centralized hazard detection and resolution
- Stall for WAW and WAR hazards
When can we execute an instruction?

- When you have operands and an execution core
Cardinal Precedence Principle

• No floating point register may participate in an operation if it is the sink of another incomplete instruction
• Values must available
3 Things hardware must support..

• (1) Detect data dependencies
• (2) Dataflow has to be preserved
• (3) When you can execute out-of-order you should
What is a “reservation station”?

• Control
 – Operation
 – Source register #'s
 – Valid bit
 – Target register #

• Data
 – Actual data items

• Other
 – Count value for scheduling
Mem -> Issue Window

• **WaitFor**
 – Space in the queue
 – Have the instruction from the memory

• **Do**
 – Decoding (if you want)
 – Place in queue
Issue Window -> Issue

- **WaitFor**
 - Need a free reservation station

- **Do**
 - Put instruction there
 - Transform them from architectural registers to tags, or, read value from register file
 - Set register file valid bit to zero and put tag of reservation station in register file.
Issue -> Execute

• WaitFor
 – Have all your data valid (all tags broadcasted)
 – A free execution uni

• Do
 – Execute!
Execute -> complete

- **WaitFor**
 - Waiting for a result bus to be free
 - Execute to complete

- **Do**
 - Send value and tag on result bus
Advantages

• More concurrent execution and still have order of precedence
 – Avoids WAR, WAW, and RAW hazards
• Research: use as a scheduler for a compiler
• Less reliance on those lousy compilers
Disadvantages

• Does not exploit associativity
 – $A = b[0] + b[1]$
 – $A = A + b[2]$
 – $A = A + b[3]$

• Complex: Full employment act for architects
O(n) structures/functions

- E functional units
- R reservation stations
- I issues per cycle
- W word size of the machine
- C CDB busses
- A architectural registers
structures/functions

• Renaming $O(I \times (2 \times \log(A) + \log(R) + \log(A)) + I^2 \times \log(A))$

• Reservation station to execute $O(R \times E \times 3W)$

• Execute -> Complete
 – $O(E \times C \times (W + \log(R)))$
Space Complexities

• Tomasulo
 - Check of RAT
 - Check of Reservation-Queue is
 - Send result to completion bus
 - Completion bus(s) to reservation station
 - Complexity of Load/Store buffer

• Multiple-In-Order-Issue Tomasulo
 - Check of RAT
Load/Store

- Total Load-Store ordering
- Relaxed memory model architectures
- Do more per cycle
- Check queue and satisfy early (possibly)
- Speculate
- Punt its up to the programmer