What is computation?

• Solves some problem
 – Control a device
 – Interface with the user

• Useful manipulation of information
 – Automated execution of an algorithm

• Practical definition
 – Sequence of primitive operations on memory
 • arithmetic and boolean instructions
 • control flow operations
 • Memory (registers, memory, desk??)
How can you express computation?

- Von-Neumann model
 - Variables (memory)
 - If .. Then
 - While …
 - Function calls
 - Modules
 - Encapsulation, all that OO stuff
- Dataflow computing
 - Demand-based execution
- Lambda calculus
- Constraint solving
- Stream-based computation
- Quantum computation
- Cellular computation
- Parallel version thereof
- Neural networks
Registers

• What are
 – On chip memory
 – More is good
 – too much and it gets slow

• Access methods
 – Directly
 – Indexing (far less common)
 – Implicit

• Architectures
 – Accumulator architecture
 – Register based (aka RISC like)
 – Stack
Memory addressing modes

- Direct (often is register indirect via gp)
- Register indirect
 - Register + constant
- Immediate
 - Add r0, #4
- Other ones
 - Memory indirect
 - Etc a = mem[mem[b]]
Instructions
Encodings

• Uniform length
 – Simple hardware
 – Simplify hardware

• Non-uniform length
 – Saves space
 – More efficient?

• No reason to waste space balance against for thought
What else might we want to express?

- Special memory accesses
 - Ports, devices, other processors
- Security
- Management instructions
- Forward looking information
- Explicit parallelism
Instruction Sets – Summary 1

• An instruction set feature (ISF) is beneficial when

 ...
 – Improves performance
 – Makes someone’s life easier at not too much expense
 – Benefit out ways cost
 – Easy to compile to
 – Saves space
 – When expresses something useful and it is used
Instruction Set – Summary 2

• An ISF is detrimental when …
 – Slows down the common case
 – Breaks existing code
 – Difficult to implement
 – Difficult to target
 – Narrow sightedness
Instruction Set – Summary 3

• An ISF is *useful* when …
 – When it's good and you can target with a compiler
What was 1980 like, for RISC?

• More in the hardware
• Design from discrete components
• Direct support for HLL
• IBM, DEC, Motorola, TI, There was no PC, Zilog,
When is CISC good?
When is RISC good?
Does it matter?

• Yes it does!
 – Extra time, cost, silicon, etc
 – You may pay for it later (I.e. Intel)

• No it does not
 – Economics, we know who won
 – We have plenty of silicon to burn
 • Full employment act for engineers
What is happening now?